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Abstract—In this paper, we develop and open-source, for
the first time, a robust and efficient square-root filter (SRF)-
based visual-inertial navigation system (VINS), termed +/ VINS,
which is ultra-fast, numerically stable, and capable of dynamic
initialization even under extreme conditions (i.e., extremely small
time window). Despite recent advancements in VINS, resource
constraints and numerical instability on embedded (robotic)
systems with limited precision remain critical challenges. A
square-root covariance-based filter offers a promising solution
by providing numerical stability, efficient memory usage, and
guaranteed positive semi-definiteness. However, canonical SRFs
suffer from inefficiencies caused by disruptions in the trian-
gular structure of the covariance matrix during updates. The
proposed method significantly improves VINS efficiency with a
novel Cholesky decomposition (LLT)-based SRF update, by fully
exploiting the system structure and the SRF to preserve the
upper triangular structure of square-root covariance. Moreover,
we design a fast, robust, dynamic initialization method, which
first quickly recovers the minimal states without triangulating
3D features and then efficiently performs iterative SRF update
to refine the full states, enabling seamless VINS operation even
in challenging scenarios. The proposed LLT-based SRF is exten-
sively verified through numerical studies, demonstrating superior
numerical stability under challenging conditions and achieving
robust efficient performance on 32-bit single-precision floats,
operating at twice the speed of state-of-the-art (SOTA) methods.
Qur initialization method, tested on both mobile workstations
and Jetson Nano computers achieving a high success rate of
initialization even within a 100ms window under minimal condi-
tions. Finally, the proposed \/ VINS is extensively validated across
diverse scenarios, demonstrating strong efficiency, robustness,
and reliability. The full open-source implementation is released
to support future research and applications.

v/ VINS: https://github.com/rpng/sqrtVINS

Index Terms—Visual-Inertial Systems, State Estimation,
SLAM, VIO, Motion Tracking, Initialization, Sensor Fusion

I. INTRODUCTION

Visual-inertial navigation systems (VINS), which utilize a
(single) camera and an inertial measurement unit (IMU) for 3D
motion tracking, hold significant potential and are widely used
in autonomous robots and mobile devices (e.g., see [1]-[4]).
Numerous VINS algorithms have been developed in recent
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years [5] and can be broadly categorized into covariance-
based and information-based methods. The former, such as
the multi-state constraint Kalman filter (MSCKF) [6], update
estimates using a dense covariance matrix but can lose positive
definiteness, causing instability and divergence. The latter,
such as the sliding-window optimization [7], exploit the sparse
structure of the information matrix for efficiency, which,
however, may become ill-conditioned. While double-precision
arithmetic could mitigate the numerical error, this problem is
especially pronounced on embedded platforms, where single-
precision floating-point arithmetic is only available on the
computation unit or is required to speed up and achieve real-
time performance.

The square-root filter (SRF), which tracks the square-root
covariance matrix, offers promising benefits such as numerical
stability, guaranteed positive-definiteness, and reduced mem-
ory requirements [8]. However, applying SRF to VINS is
challenging due to inefficiencies in maintaining the triangular
structure of the covariance matrix during updates, particularly
with large measurement sizes. This limitation has prevented
SRF from being widely used in VINS. In the recent work [9],
a novel permuted-QR (P-QR) decomposition of SRF was pro-
posed to efficiently utilize the upper-triangular structure during
matrix factorization, which has enabled seamless integration of
SRF into VINS. In this work, building upon [9], we develop an
enhanced Cholesky decomposition (LLT)-based SRF update
to further improve computational efficiency while maintaining
numerical stability.

Another critical module for VINS is dynamic initialization,
which plays a vital role in recovering the initial states on the fly
to enable seamless and continuous operation. Existing methods
typically construct a linear system using image features and
inertial measurements to obtain a closed-form solution, fol-
lowed by nonlinear optimization to refine the estimated states.
Although the minimal case of dynamic initialization requires
3 frames and 2 features, corresponding to only 100ms with
a 20Hz camera [10], existing methods often require over 1
second to achieve robust initialization [10]—[30]. In this work,
we develop a fast initialization method that, for the first time,
demonstrates the ability to robustly initialize the system, even
in the minimal case.

In particular, the main contributions of this paper are
summarized as follows:

« We propose square-root VINS (v/VINS), achieving ex-
ceptional efficiency and remarkable numerical stability on
32-bit computing platforms, with performance more than
twice as fast as state-of-the-art (SOTA) algorithms for 3D
motion tracking.

¢ Our VVINS introduces a novel Cholesky decomposition
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(LLT)-based SRF update method, which significantly
outperforms existing approaches by fully leveraging and
preserving the upper-triangular structure of the SRE.

e Our VVINS introduces a novel dynamic initialization
module that, for the first time, robustly achieves initial-
ization under the theoretical minimal case (100ms with
just 3 keyframes).

¢ We perform extensive numerical studies to highlight po-
tential numerical challenges in VINS and underscore the
advantages of the proposed v VINS. Comprehensive real-
world experiments validate the notable efficiency boost of
the proposed method while maintaining high accuracy.

The rest of the paper is organized as follows: After review-
ing the literature focusing on VINS estimation and dynamic
initialization in Section II, we describe the proposed improve-
ment on the SRF efficiency in Section III. Section IV presents
the proposed v/ VINS while Section V details the proposed
ultrafast dynamic initialization. The comprehensive evaluation
of the proposed methods is conducted in Sections VI, VII, and
VIII. Finally, the paper concludes in Section IX.

II. RELATED WORK
A. Visual-Inertial State Estimation

An accurate, efficient and reliable state estimation algorithm
is the foundation of successful VINS. From the perspective
of iterative update and relinearization, VINS can be catego-
rized into optimization-based method [7], [14], [31]-[33], and
filter-based method [34]-[40]. The former performs iterative
update and relinearization to solve the non-linear optimization
problems in VINS and can achieve potential accuracy gain
at the cost of more required computation, while the latter
only performs one-time linearization and achieves superior
efficiency, especially desirable for low-end platforms, where
computation power is in severe constraint.

From the other perspective, VINS state estimation algo-
rithms can also be categorized into covariance and infor-
mation forms. In the former such as the extended Kalman
filter (EKF) and its variants, the estimator keeps tracking
the dense covariance matrix to update the estimate [6], [38],
[39], [41]-[44]. In contrast, the information estimators such as
extended Information filters (EIF) [45] or optimization-based
methods [7], [14], [15], [21], [46], maintain the information
(Hessian) matrix and exploit its sparse structure in solving for
estimates. However, both covariance and information filters
face challenging numerical issues, in particular on resource-
constrained edge platforms [47], [48], when limited word
length (32-bit float, instead of 64-bit double) is available
or it is required to achieve real-time performance. In the
covariance form, the covariance matrix tends to lose its
positive definiteness and cause the estimator to diverge. In the
information form, as the information matrix can easily become
ill-conditioned (e.g., condition number larger than 10° [47]),
naively inverting it during optimization would lead to large
numerical errors (see Chapter 3.5.1 in [49]).

To address this numerical instability, there exist methods
that use the square root of the information matrix instead of
its full matrix and were shown to be effective to some extent in
VINS [37], [48], [50]-[59]. For example, the method in [48]
maintains an upper triangular square root of prior information

and uses QR-decomposition to incorporate new measurements
into the prior, then invert it to solve for the state update.
While this estimator achieves the same accuracy with the
half of the word length, it still has the concerning numerical
issue with a relatively high condition number (10°) over
time, especially when paired with a high-precision IMU [60],
[61], lead to substantial numerical inaccuracies for long-term
operations. This numerical issue was addressed recently in [62]
by preconditioning with a square root information filter.

On the contrary, VINS estimators in the covariance form
tend to offer better numerical stability. For instance, in the
EKF-based VINS, the only matrix that typically requires
inversion, the innovation covariance, usually possesses a good
condition number [47]. This makes the use of the square-root
covariance matrix highly appealing for VINS, as it combines
the advantages of the covariance form with the benefits of
square-root properties. Surprisingly, this idea of SRF remains
largely unexplored in VINS. Looking into history, the SRF has
undergone significant improvements over the decades. Back in
the 1960s, the initial SRF formulation was proposed by Potter
and played a significant role in the Apollo project’s success
[63], [64], which has been extended to account for propagation
(process) noise [05]. While several update methods have
been developed to enhance SRF efficiency [66]-[68], these
methods are generally less efficient than conventional KFs
due to the disruption of the square-root covariance’s triangular
structure during updates. Agee [69] and Carlson [70] proposed
methods that preserve the triangular structure and offer similar
efficiency to KF, but these are limited to sequential updates.
Modern systems, however, prefer batch updates with vector
operations that enable more efficient level-3 BLAS opera-
tions [71]. These limitations of the SRF make it unsuitable
for VINS applications that demand quick, real-time estimates
from large-size measurements.

To address the aforementioned issues and fully harness the
benefits of the square-root covariance, the recent work [9]
introduced a novel (P-)QR-based SRF update and applied
it to VINS, gaining computational efficiency and numerical
stability. In this work, we significantly extend [9] by designing
a novel LLT-based update method for SRF to achieve even
greater efficiency and an ultrafast dynamic initialization mod-
ule, as well as performing substantially more comprehensive
experimental evaluations.

B. Visual-Inertial System Initialization

In addition to the state estimation algorithm, VINS relies
on accurate initial conditions (e.g., velocity and gravity) for
a successful operation. Although initial conditions can be
recovered by assuming static motion, this often involves risky
assumptions in practical systems. Dynamic initialization, on
the other hand, enables VINS to recover key parameters
while in motion, eliminating the need for the platform to
remain stationary at startup. This is also crucial for practical
applications, as it enables the system to re-initialize after
failures and significantly enhances robustness

Dynamic initialization methods are broadly categorized
into tightly coupled and loosely coupled approaches. Tightly
coupled methods (closed-form solutions) recover initial states
directly by integrating both visual and inertial measure-
ments [10], [22]-[30], [72]. The first closed-form solution
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for gravity direction, velocity, scale, and accelerometer bias
was introduced in [72] and has been extended to include
unknown camera-IMU calibration [23] with the minimal case
and degenerate motion analysis [10]. In contrast to formulat-
ing a linear system, [24] formulates a MAP (Maximum A
Posteriori) problem that incorporates sensor noise to further
improve accuracy. Later on, [25] demonstrated the impact of
gyro bias on initialization accuracy and proposed its estimation
via nonlinear optimization. This was later improved by using a
rotation-only constraint [73] and adding line constraints [20],
[21].

On the other hand, loosely coupled methods first perform vi-
sual structure-from-motion (SfM), followed by visual-inertial
alignment to match IMU measurements and recover the initial
states [11]-[21]. For example, Qin et al. [13], [14] leverage
a simplified SfM pipeline to obtain the up-to-scale trajectory,
and then formulate a linear system that recovers scale, gravity,
and velocity. The IMU uncertainty is further being considered
in visual-inertial alignment to improve performance [31]. A
more recent method showed that up-to-scale SfM can be
formulated in a maximum-likelihood framework and constrain
gravity magnitude, improving accuracy and avoiding issues
with iterative solutions [17].

A key challenge for the aforementioned initialization meth-
ods is their requirement to solve for 3D feature positions
during the initialization process. Given their cubic complexity
with respect to the number of features, this can significantly
impact efficiency. Various approaches have been proposed to
address this issue. For example, [28] enhances efficiency in
tightly coupled initialization by marginalizing (projecting) the
depth of each feature bearing and the redundant 3DoF features
in a reference frame. However, this still requires triangulating
the 3D positions of features, which can make the marginaliza-
tion numerically unstable under low parallax conditions, where
some of the features are close to rank deficiency. Recently,
[30], [74] incorporated learned image depth and leverage
affine-invariant single-image depth to reduce feature parame-
ters but relies on a depth network. The most related work is by
He et al. [19], which employs the LiGT constraint [75], a linear
constraint that uses known rotation and camera measurements
to formulate the linear system without the need to estimate 3D
features. However, their tightly coupled approach incorporates
all visual measurements, resulting in a large measurement size.
Their loosely coupled method solves the LiGT constraints for
positions up to scale before solving for inertial states with
additional velocity parameters, increasing the state size.

In contrast, we introduce a novel linear system formula-
tion using inertial and bearing measurements to solve for
initial velocity and gravity. We neither recover 3D feature
positions nor retain unnecessary unknown scales, making our
solution both highly efficient and robust. To ensure successful
VINS operation after initialization, we also introduce an SRF-
based refinement that improves state accuracy and efficiently
computes the initial covariance. Unlike the Visual-inertial
Bundle Adjustment (VI-BA)approach, which relies on poten-
tially unstable matrix inversion, our method directly computes
the covariance, ensuring robustness for VINS. Given these
benefits, our initialization method is the first among all existing
approaches to achieving the theoretical minimum condition,
requiring only 3 sequential frames in just 100 ms initialization

window.

III. IMPROVING SRF COMPUTATIONAL EFFICIENCY

The SRF has existed for decades and potentially has better
numerical stability and efficiency [76]. Specifically, unlike a
standard EKF (and its variants) that estimates the (dense)
covariance matrix P, the SRF propagates and updates the
corresponding upper-triangular square-root matrix U which is
given by [76]:

u'u=pr (1)

Because of this special structure, the SRF can represent a
much broader dynamic range of numbers and reduce the con-
dition numbers of the involved matrices (especially, the condi-
tion number of U as compared to that of P). It also implicitly
guarantees the symmetry and positive semi-definiteness of the
covariance matrix. These numerical advantages of the SRF
ensure better numerical stability (over the EKF). Furthermore,
the SRF can potentially be more efficient in computation
and memory usage, as it can operate with shorter word
lengths (e.g., 32-bit floating-point instead of 64-bit) without
compromising accuracy.

However, we have not seen its wide adoption in VINS,
because it is challenging to fully capitalize on these benefits in
practice. In particular, the canonical update form in the SRF is
computationally expensive. For example, the Potter SRF [63],
the earliest SRF method, destroys the upper triangular structure
of U during the update, necessitating an additional costly
matrix triangulation step to restore the structure. The Carlson
SRF [70] improved upon the Potter form by preserving the
upper triangular structure during updates, resulting in signifi-
cant speedups. However, both the Potter and Carlson forms are
derived for scalar measurements. While they can be extended
to vector measurements through sequential scalar updates [67],
[68], they fail to fully leverage Single Instruction/Multiple
Data (SIMD) in modern computers to accelerate matrix op-
erations. There are SRF update forms that support direct
updates for vector measurements [59], [67], [68]. However,
they either fail to maintain upper-triangular U or require
a theoretically higher number of floating-point operations
during updates, which diminish the benefit of vectorization. To
address these limitations in existing SRFs, we propose a novel
Cholesky decomposition (LLT)-based SRF update method.
This approach overcomes computational bottlenecks by doing
vector updates and properly maintaining upper-triangular U
during the update, and also has a smaller number of operations
when the measurement size is large. Moreover, we also fully
exploit the upper-triangular structure of the SRF and further
optimize its computation in both propagation and update.

In the following section, we first briefly introduce the stan-
dard SRF propagation step for completeness. We then present
our novel update formulation, which is the core contribution
of this work.

A. QR-based SRF Propagation

As the SRF propagates and updates the state estimate
(mean) in the same way as the EKF [76], we here will focus
on deriving EKF-equivalent propagation and update of square-
root covariance matrix U. In particular, given Py_q),_1 =
U;_l‘k_lUk_l‘k_l leveraging QR decomposition, we can
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derive the covariance and its square root propagation as
follows:

Prjo1 = ®r1Pr_qjp1®l g + Wiy 2
T 1
= 'I)kflU;gr_1|k_1Uk71\k71<I)g—1 +We Wi, 3
1
T W2
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where ®;,_; is the state transition or system Jacobian matrix,

and we have employed the Cholesky decomposition (LLT)

LLT
Wi =

Wk 1Wk 1> as well as the fact that Qz_; is orthonormal.
It is clear from the above derivations that the square root
covariance Uy ,_; propagates from time #x_;1 to #; via
efficient QR decomposition:

Wi (Zq,, [U’“"“} )

on the system noise covariance Wj_1, i.e.,

B. LLT-based SRF Update

As discussed earlier, the update is a computational bot-
tleneck if a canonical SRF form is used. Although a recent
work [9] introduced the permuted-QR (P-QR)-based square-
root update to mitigate this issue, there is still room to further
improve efficiency with Cholesky decomposition, which leads
to our novel LLT-based efficient SRF update algorithm:

Lemma 1. Let the measurement model be given by z; =
h(xy) + ny, with measurement residual as:'

vy =z — Zgph—1 ~ HpXpp—1 + ng )

where the measurement noise assumes ny ~ N(0,Ry) and
Hj, is the measurement Jacobian, the state and square-root
covariance update of the SRF can be written as:

Uy =F;, "Upp )]

Xk = Xgjk—1 + U;\kUMkHlezlrk (10)
where Fy, is computed via Cholesky decomposition of:
LLT
Cr =1+ Uy HiR'H, U, = F{F, (D)

Note that a similar permutation is applied prior to the
Cholesky decomposition, following the approach in [9], to
ensure that the resulting matrix ¥y, is lower triangular. Con-
sequently, F T is upper triangular, as required in the update.

IThroughout the paper % is used to denote the estimate of a random
variable x, while X is the corresponding error state. The subscript a|b denotes
the estimate at time ¢, by fusing all the measurements up to time tp.

Visualization of the matrix computation and its structure evolution during the proposed LLT-based SRF update.

TABLE I
FLOPS OF THE DIFFERENT SRF MEASUREMENT UPDATE FORMS
ASSUMING UNCORRELATED MEASUREMENTS AND CONSIDERING ONLY
THE DOMINANT COMPUTATION TERMS (m MEASUREMENTS, n STATES).

Methods  Potter [63] P-QR [Y]

3mn? + %IL

Carlson [70] Kaminski [68] [59] Proposed

Flops 6mn? 3 2mn? 4 %n3

%mn2 2m2n + 5mn? + %n3

The SRF update proceeds by first computing Uy, in (9),

followed by the state update in (10).

Proof. We now show the proposed LLT-based SRF update is

equivalent to the EKF:
-1
Pip =Pyt — Prpo HY (HpPrpoHY +Ry)  HyPyrp

-1
= Ul <I — Uppp—r HY (Hk-,UkT»‘k,lUk\qu; + Rk,) HkUZM,1> Upklh—1
-1

Uk|k: 1 I+Uk|k—1H;R;1HkU/I\k_1 Upjr—1
Ck:FZFk
Uklk 1F;1F;TUM;€,1 = Ug\kUlﬂk
-1
Pip—H) (HPyH +Ry) 1y
-1 _
=Py Hy (HPyj_1H] +Ry) RkRk 'ry

= (Pyp—1 H) — Py H (Hy Py H + Ry)

HiPy)HI R, '

HkPk\k HOR; 'y
= (Pt — Prppor HY, (HePypHY + Rk:)_
=P, H R} 'y,

= U}, U H R, 'y,

O

In the above derivations, we fully exploit the upper triangu-
lar structure of F,;T. Figure 1 illustrates the matrix operations
and the structural evolution throughout this process. While
algebraically equivalent to the EKF, the proposed LLT-based
SRF update is significantly more efficient than other square-
root update methods. It avoids redundant factorizations and
explicitly leverages the triangular structure for faster and more
scalable computation. A detailed discussion of these efficiency
gains is provided below.

We stress that efficient computation of the lower-triangular
matrix F is critical to enable efficient update of the square-
root covariance (9), because F,;T and Uy, are both upper
triangular and their product (9) would be trivial and become
upper-triangular by structure. To this end, when computing
Cy, (11), we exploit the upper-triangular structure of Uy, and
the symmetry of Cy. When computing Uy, (9), we utilize the
upper triangular structure of F; and Ujx—1 and efficiently
solve F;Uk‘k = Uy, x—1 via back substitution. To quantify
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the computational cost, we calculate the number of arithmetic
operations (i.e., floating point operations or FLOPs) required
in the update under the common assumptions: (i) measure-
ments are uncorrelated, and (ii) only the dominant (highest)
order of computation is considered. Table I summarizes the
computational complexity of various SRF update methods for
m measurements and n states. As evident, the proposed LLT-
based update method requires fewer operations when m > %n,
as compared to the Carlson update [70]. In contrast to the P-
QR-based method [9], this new update has a smaller coefficient
for the term involving mn? while a slightly larger coefficient
for the term involving n3. As a result, the proposed method is
more efficient when m > %n, which typically holds true for
VINS, where the measurement numbers are significantly larger
than the state dimensions. Theoretically, when decomposing a
matrix to obtain its square root, the Cholesky-based method
requires fewer FLOPs than the QR-based method, albeit with
slightly reduced numerical stability [49]. However, due to the
relatively small condition number of C in practical VINS,
Cholesky-based decomposition can be employed here without
encountering numerical issues.

IV. SQUARE-ROOT VINS

We now apply the proposed SRF presented in the preceding
section to the VINS problem and design an ultrafast and nu-
merically stable visual-inertial state estimator, termed Square-
Root VINS (sqrt-VINS) or v/ VINS. The proposed v VINS is
developed within an efficient sliding-window filtering frame-
work by fully exploiting the specific block triangular structure
of the system to achieve faster-than-ever performance.

First of all, we propose a special ordering of state vector
to avoid unnecessary computations in v VINS. Specifically, at
time ¢, the state vector xj, consists of the current navigation
states x7, , the calibration state x, historical IMU pose clones
Xc, and a set of 3D environmental (SLAM) features x, in
the following order:

-

xp = [x] x}, | x5 XHT = [x;, | x{ xﬂT (12)
= [Bq" “pj, v by bl (13)
=[ta ta" “p; ('] (14)

= [xf,oxf T (15)

xp = [Of .. 9] (16)

where g is the JPL unit quaternion corresponding to rotation
matrix R that represents the rotation from the global {G'} to
the IMU frame {I}; We use the JPL convention to maintain
consistency with the majority of prior work in filter-based
VIO. For a detailed comparison between the JPL and Hamil-
tonian conventions, we refer readers to [77]. Gp 1, Gvy, and
Gf, are the IMU position, velocity, and ¢-th feature position
in {G}; b, and b, are the gyroscope and accelerometer

biases; x7, = [q' “p}]T is the i-th cloned pose; t; and
{Lq",%p]} are respectively the time offset and extrinsic

calibration between the camera and IMU, while ¢ is the
camera intrinsic parameters.

Inspired by [59], the special ordering of the state vari-
ables (12) is discovered based on our computational com-
plexity analysis and follows the principle: The states to be
frequently marginalized are placed at the end (i.e., IMU clones

and feature positions), while the variables that will be kept
in the state vector (such as the current navigation states and
calibration parameters) are stored in the front. By doing so, we
can leverage the triangular structure of the SRF to efficiently
insert and delete (marginalize) variables from the state vector
without expensive re-ordering, which will become clear in the
ensuing v/ VINS operations (see Sections IV-B and IV-C).

A. IMU Propagation and Integration

A standard 6-axis IMU provides local linear acceleration
and angular velocity measurements a,, and w,, at time tj:
an,(ty) = aty) — éR(tk)Gg + ba(tg) + ng(tr) a7
wim (tr) = w(ts) + by (tr) +ng(tk) (18)
where w(t;) and a(ty) are the true angular velocity and linear
acceleration in the IMU local frame {I}, “g ~ [0,0,—9.8] "
is the known global gravitational acceleration, and n, and
n, are the zero-mean white Gaussian noise. These IMU

measurements are used to drive the inertial navigation system
(INS) whose continuous-time kinematics is given by [78]:

Lilt) = 30wtk (19)

Cpr(t) = Cvi(t) (20)

Gur(t) = ¢"RTa(t) 1)

By (t) = Dy (t) (22)

ba(t) = nua(t) (23)

where Q(w) = [ig‘)—rJ Lg] and here |-]| is the skew-

symmetric matrix. We have modeled the gyroscope and ac-
celerometer biases as random walk, with their time derivatives
represented as white Gaussian processes, denoted by n,,
and n,,,, respectively. Integration of the above continuous-
time inertial kinematics from ¢; to tyy; yields the following
discrete-time motion model:

GPR=7"AR ZR 24)
1
p1k+1 = pIk: + kaAT+ §GgAT2 + gcRTIkafkﬂ (25)
Vi, =vi, + 9gAT + ¢RTB, (26)
bgk+1 = bgk + ngk (27)
ba,., = bay + Ny (28)
where AT = tp11 — tg, ng = ti"'“ nyg(u) du, and
n, = tf;j‘“ nye(u) du. Importantly, ﬁ“AR is the gyro

preintegration in [ty 1], while * a1 and * 3y, are the
preintegration of acceleration measurements. Due to space lim-
itations, we do not provide full derivations of the preintegration
terms. However, readers can refer to related works on IMU
preintegration theory (see [79]-[81]). In particular, [81] and its
associated technical report offer detailed derivations of these
terms:

I te41
LT AR = 7/ Tw(t,)dr
tk+1
oy, = /t /t AR (ap, (1) — by (u) — ng(u)) duds
k k

"B, = / o AR (ap, (u) — ba(u) — ng(u)) du

tr
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With the above model model (24)-(28), we can perform the
SRF propagation as described in Section III-A.

B. Stochastic Cloning and Marginalization

The proposed v VINS adopts the sliding-window filtering
methodology to control the ever-growing computational cost
over time while (sub-)optimally fusing all the measurements
available in the current window. This is achieved by perform-
ing efficient stochastic cloning [82] and state marginalization,
which is akin to that in the multi-state constraint Kalman filter
(MSCKEF) [6], [83] but operating on the square-root covariance
matrix U [see (1)].

To that end, we first partition the state vector (12) into the
most recent navigation state xj, the state to be marginalized
Xps, and the remaining state xp, and their corresponding
columns of the square-root covariance matrix are U, Uy,
and Ug, respectively. As the system propagates forward, we
perform stochastic cloning [82] to augment the state and
square-root covariance with those of the most recent or cloned
camera/IMU pose in order to better process its corresponding
measurements at a later time. As the square-root covariance
for each state corresponds to the respective column blocks in
U [59], [84], we specifically copy the cloned pose xr and
its corresponding column Ur, to get the augmented state and
square-root covariance as follows:

lonin,
Xioxl xp] T K oxpoxh oxi] @9)
Uy Uy Up] “™% [U; Ur Uy Ug| (30)
This can be proven by demonstrating that UTU = P

through the aforementioned process for U and the covariance
augmentation in the conventional MSCKEF. The detailed proof
can be found in Section 2.3 of [84].

To bound the size of the state so as to control computational
cost, we marginalize and remove the unwanted state xj;
from (29) and its corresponding block Uj, from (30). At the
same time, because this marginalization destroys the upper
triangular structure of the square-root covariance, we perform
QR decomposition to ensure the resulting upper triangular U*:

[Uy Ur Uy Ug|

%
U, Ur Ux Lq Ff, ]

At this point, we stress the significance of the proposed
special ordering of the state [see (12)]. During marginalization,
by ordering the state with non-marginalized variables (e.g., X1
and x.p) at the top and marginalized variables (e.g., features)
at the bottom, the resulting square-root covariance remains
close to upper-triangular, leading to significant computational
savings. Figure 2 illustrates this process: The left side shows
an extreme and most ideal case where the marginalized state
xps is at the end of the state vector. After removing its
corresponding column U, from the square-root covariance,
we directly obtain the upper-triangular square root covariance
U* without further operations. By contrast, the right side of
Figure 2 shows a general case where the marginalized state
in the middle of the state vector, requiring an additional QR
operation to restore the upper-triangular structure. Note that,
although we would like to place the marginalized state at
the very bottom so as to completely avoid QR operations,

marginalization

€2y

in practice, this is hard to guarantee — for example, when
dealing with lost track features, the marginalized state might
not always be at the very end — and QR is still necessary.
However, we only need to perform QR on a sub-block of
the square root covariance matrix. In comparison to the
square-root information filter [48] that requires processing the
entire matrix, our approach remains significantly more efficient
thanks to the nature of SRF marginalization.

C. Structure-Aware Efficient Measurement Update

Assume that at time t;, we have established a visual feature
track within the current sliding window in which we assume
M features in total being detected and tracked in the time win-
dow of [tg—c, -+ ,tx]. A feature f; (¢ = 1,---, M) observed
at time ¢, has the following nonlinear bearing measurement
model by projecting its 3D position onto the 2D image plane,
which is further linearized for SRF update [see (12)]:

Zisn = ha(hy(“" ), ¢) + i = (32)
re= Hl,nil,m\n—l + ch,nicb,n\m—l + Hfi,nfi,m\n—l + n; .
(33)

where hg and h, are the intrinsic distortion and projection
functions, respectively. Note that h, is general and can support
any camera model (e.g., radial-tangential and equidistant [85]).
In a typical visual tracking scenario, M can be large (in the
order of thousands) and easily result in prohibitive computa-
tional cost if processing them without discrimination. As such,
we categorize them into the SLAM features that are included
in the state and the MSCKF features that will not be kept,
and accordingly, partition the measurement set into different
subsets depending on the observed features’ categories similar
as [41], [59]:
{2 i St = ZNUZsUZM U 2y
7 —_— Y—

ZsLAMm

= Hm,nxac,n\fs—l + Hf,kaXf,rc\n—l +1n; .

(34)

Zvro

where Zgr 4 includes all the measurements available in the
window related to the SLAM features that either are already
in the state vector (with respect to Zg) or are to be initialized
into the state (using Zy), and Zy ;o contains the remaining
measurements related to the MSCKEF features, some of which
are to be processed at the current time (Z),) while the others
are delayed for future update (Zy). Except Zy, we perform
different update strategies for these measurement subsets to
ensure efficiency and accuracy.

Without loss of generality (w.l.0.g), we first consider using
the measurement set Zy [see (34)] to initialize a new SLAM
feature fy into the state vector (12). Although we can use the
delayed initialization to efficiently estimate the feature position
N x|x- its square-root covariance would be more challenging.
To this end, we first stack all the linearized measurement
residuals of Zx [see (33)] and have:*

ry = Hy.%, + Hy tfy +ny (35)

Note that Zy typically has more than the minimum required
measurements for feature initialization in order to obtain better
accuracy; that is, the initialization is over constrained and
Hy s is tall. This implies that over-constrained Zy also

2We here have dropped off the time index for brevity and employed the
subscript symbol “N” to refer to the association with Zx . Note that similar
notations are used for the other measurement sets.
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Fig. 2. An illustration of the marginalization process of v/ VINS with different state ordering. The blue blocks represent the marginalized state x s and its
covariance block U, while the pink blocks represent the other states. The left side shows an extreme case where the marginalized state is at the bottom,
allowing direct extraction of the upper-triangular square-root covariance U*. The right side shows the marginalized state in the middle, requiring an additional
QR operation. Placing marginalized states further toward the bottom improves structure preservation and reduces the QR operation cost.

encompasses information that constrains the existing state x,
(not just the new feature fy), which we seek to optimally
utilize too. As evident from (35) that the range space of
H y ; essentially constrains the new feature while its nullspace
constrains the existing state, we perform QR decomposition on
Hy ;s in order to initialize the square-root covariance as well
as extract constraints on x, from Zy:

Hy ¢ R [Ql QQ] {JI(\)ff:|

where Q; spans the nullspace of Hy ; and Qg spans the
range space. It is important to note that during the above QR
decomposition, we use the P-QR decomposition introduced
in [9] to permute Jy ; into a lower triangular matrix, instead
of upper triangular. This is different from the traditional SLAM
initialization [86] and can better preserve the structure of
the SRF to improve efficiency. Left multiplication (33) by
[Ql QQ]T yields:
T T s T
Q1= Q] s w2 G

(36)

YN 0 Ty.| [ty NN
= = ’ 2+ 37
[CN} [JNJ JN,w:| [XJ {éN:| ©7
where I'ne = Ql Hpy .. Clearly, as the top linear
INa Q '
system: vy = I'ny X, + nn, depends only on the existing

state, it should be utilized as normal measurements like Zg to
update the state. On the other hand, the bottom linear system:
SN = JN,ffN + JN,I)NCJE + €N7 £N ~ N(O,Q), is used to
efficiently initialize the square-root covariance with the new
feature being included in the state as follows:

U —UJNLJNH

U = ol
0 Q]

(38)

This can easily be proved by performing U’T U’ = P’ to show
its equivalence to the SLAM feature initialization in EKF [87].
For Zg, as all the measurements relate to SLAM features x ¢
that are already in the state vector, we simply stack all the
measurement residuals (33) for batch update:
rs =Hg %X, + Hg rXs + ng (39)
In contrast, Z,; correspond to the MSCKF features fj,
which are not in the state but we still want to utilize their
constraints on the state. To this end, we project the linearized
measurement residual onto the left nullspace IN of the feature
Jacobian H, f, effectively eliminating the feature dependency
and improving efficiency by avoiding the need to keep these
features in the state vector [0].

rar = Har X, + Hyy ifr + 0y (40)

N'ry =NTHy %, + N'ny (41)

= Y =T yaXe + 1M (42)

We have thus far built the linearized measurement residuals

[see (37), (39) and (42)] for different measurement sets (34)

available in the current sliding window, which are stacked in
a compact form for the SRF batch update:

TMm Ty 0 O >:<z M
IN|=|Tnz O Of |Xf| + 1N (43)
rg HS’,r Hg,f 0 fN ng

Using (43), we perform the efficient LLT-based SRF update
[see (9) and (10)] for the proposed v/ VINS.

In particular, we take full advantage of the sparse structure
of the measurement Jacobian matrix in (43) when computing
the matrix C and its Cholesky decomposition to obtain F [see
(11)]. Specifically, as the Jacobian of (43) has zeros (the third
block column) corresponding to the new SLAM feature fy,
we group the first two block columns corresponding to x,
and xy as H;. In computing C, as UT is lower-triangular,
we only need to multiply the non-zero blocks of H,; with
its corresponding UIf, which naturally leads to sparse C =

Cgf (I) , where C,y = Ufo;rfRlefoIf + 1. As
a result, we perform LLT only on C,; rather than the full
matrix, allowing us to efficiently solve for F and thus sparse
F = F(‘;f (I)} We also exploit this special structure of F
when performing the SRF update [see (9)]; that is, we only
need to compute F;; along with its corresponding upper
triangular matrix, avoiding processing the entire matrix. Note
that this saving can be significant in particular when multiple
new SLAM features are initialized in the current window
which is often the case in practice.

1) Outlier Rejection: Measurement outliers are inevitable
in practice. Compared with an information-form estimator, we
have covariance available at each update, thus, we employ the
standard 2 test to reject them by computing the following
Mahalanobis distance:

dp =1 (HUTUHT +R) 'r (44)
where r and R generically refer to the measurement residual
and noise covariance [see (8)]. Thanks to the special structure
of the measurement Jacobian H in our case [e.g., see (43)],
we are able to compute the Mahalanobis distance (44) very
efficiently. In particular, as the measurement residual of the
MSCKEF features ~y,s is not related to features [see (43)], the
following most expensive operation is carried out as:

U, Ug} {r}“} _ [Ulr}m} 45)

T _
UH _{0 U; 0 0
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Clearly, given the upper-triangular structure of U and the
unique structure of the measurement Jacobian I'y; ,, we only
need to compute U1 T}, , instead of multiplying the measure-
ment Jacobian with the full U. This holds exactly the same for
the measurement residual of the new SLAM features vy [see
(43)]. For the SLAM feature measurement residual rg (39),
the sparsity of the measurement Jacobian which only relates
to the corresponding camera pose and the observed features,
also allows us to leverage the upper-triangular structure of U
to compute the Mahalanobis distance d,,, (44) very efficiently.
Note that the computed UH T (45) can also be re-used in the
proposed SRF update to avoid repeated computation.

2) SLAM Feature Propagation: Anchor feature representa-
tion, which parameterizes features in a moving anchor frame
{ A}, has demonstrated robust performance in VINS [14], [37],
[83], and thus is also used in this work. The anchor frame
in principle can be selected as any camera frame within the
sliding window that observes the feature. When the anchor
frame is moving out of the current sliding window, a new
anchor frame is selected and the features are transformed
or anchored to this new frame. Though it appears to be
straightforward, proper handling of the feature’s covariance
in the new anchor frame is often overlooked. To this end, we
build the relation between the feature represented in the old
anchor frame {A4;}, denoted by A1f and in the new anchor
frame { A5}, denoted by 42f. This can be derived based on the
fact that the global position of the static feature, ©f, remains
unchanged regardless of the choice of anchor frame:

Gf = MRTMf 4 Cpy, = 22RTA£ 4+ Cp,,  (46)

where x4, = {giR, Gpa,} (i = 1,2) denotes the orientation
and the position of the ¢-th anchor frame in the global frame.
Linearization of the above equations yields:

Gf = HAl)N(/h + HfA1 Alf = HAziAg + HfA2 AQ%
= Mf=H;| (Hy, “f+HaXa, —HaXa,) @7

where H 4, denotes the Jacobians with respect to anchor poses
and Hy, denotes the Jacobians with respect to anchor feature
represenfed in different anchors. Leveraging the Jacobians in
equation above and covariance of the old anchor feature, old
anchor pose and new anchor pose, we perform QR-based
covariance propagation introduced in Section III-A to obtain
the covariance matrix of the new anchor feature “2f.

D. Online Calibration

To make the proposed v/ VINS more robust and easy-to-
use, we also perform online calibration of the camera-IMU
spatiotemporal parameters and camera intrinsics. To calibrate
the extrinsic and intrinsic parameters, we include them in
the state vector and build the measurement model that also
depends on them (32). With that, we perform SRF update
of these parameters along with the other states (see [83]).
However, calibrating the time offset ¢; between the IMU and
camera is not that straightforward and requires more care [88].
Specifically, when a new image is available at time t;, given
the prior estimate of the time offset f4, we propagate the
IMU/camera pose up to time (¢, + t4) with the IMU readings
and obtain the prior pose estimate X7 (¢, +14) [see (12)]. Note
that the proposed v/ VINS clones the true pose xr(tx +1tq) in
order to process the visual measurements of this image at a

later time (along with the other measurements in the current
window). It is clear that the estimation error 4 of the time
offset contributes to the error of this cloned pose X7 (¢ +t4),
which should be carefully compensated in its covariance via
SRF propagation (which is often overlooked in practice). As
this is not the main contribution of our work, we refer the
reader to [88] and our open-source implementation for further
details.

E. Remarks

At this point, we have presented the proposed v/ VINS
and its main steps are summarized in Algorithm 1. We here
highlight a few design choices to take advantage of the
structure of the system so as to improve the efficiency.

o Special state ordering: The order of the state variables
[see (12)] is especially designed to speed up update and
marginalization process. For example, x; and x., are
prioritized at the top as they would not be marginalized,
while the clones x~ are ordered from the latest to
oldest for easy marginalization of the oldest one. The
feature state, Xz, is placed at the end, because: (i) SLAM
features are marginalized frequently, (ii) this ordering
allows better sparsity when computing C in Eq. (11) and
(iii) it ensures U is still upper-triangular after initializing
a new SLAM feature, thereby preserving the structure
and improving efficiency.

e Delayed QR and LLT operation: As introduced in previ-
ous sections, QR decomposition is used during propaga-
tion, state cloning, marginalization, and anchor changes
when an anchor feature is used. The efficiency can be
further improved by skipping the QR step in propagation
and cloning, with QR being performed only once during
marginalization before update to maintain an upper trian-
gular square root covariance to facilitate the subsequent
update process. Meanwhile, measurements from different
feature types (e.g., MSCKEF, old SLAM, and new SLAM
features) are processed individually and then stacked for
a single, efficient LLT-based square-root update, as shown
in Algorithm 1.

o Avoiding repeated computation: When performing SRF
update, the computing of C is needed. As mentioned in
Section IV-C1, the computation of UH ' during outlier
rejection can be reused to enhance efficiency and avoid

Algorithm 1 /VINS
Propagation:
o Propagate the state to x(¢ + tq4) by Eq. (7)) (skip OR)
Clone and Marginalization:
o Cloning the latest IMU pose [Section IV-B] (skip OR)
o Anchor change for SLAM features by Eq. (7) (47) (skip OR)
« Marginalize oldest clone and lost tracked SLAM features
[Eq. BDI (QR)
Measurements Formulation:
Using the tracked features to formulate measurements and perform
outlier rejection [Section [V-C1] to prepare for updates.
o MSCKEF features via nullspace projection [Eq. (42)]
o SLAM feature initialization [Eq. (36),(37),(38)]
o SLAM features re-observation [Eq. (39)]
SRF update:
o Stack meas. [Eq. (43)] and do SRF update for both the state
and the square-root covariance [Eq. (9),(10)] (LLT).
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Fig. 3. An illustration of two-view geometry for featureless initialization.
The pink and blue planes represent two epipolar planes formed by the features
fi and f, and their corresponding camera frames {C1} and {C2}. The
bearing observations are denoted by b, while n; and ngy represent the normal
directions of the two epipolar planes. {Io} indicates the initial reference frame
and t is the direction of the relative pose.

redundant calculations. In certain cases where outlier
rejection is not performed by x? test, we first stack all
the measurements Jacobians and then fully leverage the
sparsity to perform measurement compression [6]. The
triangular structure and symmetry are then exploited to
efficiently compute UH" and C.

V. ROBUST AND FAST DYNAMIC INITIALIZATION

Dynamic initialization is critical to ensure robust and
smooth VINS operation without discontinuity. Successful ini-
tialization not only requires an initial solution but also ensures
stable and continuous motion tracking afterwards. However,
fast initialization with minimal data is challenging due to
limited visual parallax and low signal-to-noise ratios. To ad-
dress this challenge, we propose a novel dynamic initialization
method, tightly integrated with the proposed SRF, providing
robust and efficient initialization, even in minimal conditions.

Specifically, our initialization consists of two main steps:
(1) Feature-less initialization efficiently recovers the initial
velocity and gravity without recovering 3D feature positions
to improve both robustness and efficiency; and (ii) SRF
refinement optimizes the IMU state, features, and covariance
through efficient iterative SRF updates, ensuring smooth and
robust VINS operation. Note that in our initialization, as
common practice, we assume the IMU biases are reasonably
accurate (e.g., obtained from prior calibration) and the camera-
IMU calibration and time offset are known.

A. Feature-less Initialization

To maximize efficiency, we first recover only the minimal
states (i.e., without unobservable global position and yaw),
including the local velocity (“ovy,) and gravity ({°g):

Tog _ [loy, T TogT]T
ox = [fov] TogT] (48)
where {Ip} is the initial IMU frame of reference. We param-
eterize the gravity with the minimal two parameters (o, (3):
logT = |g|[cosasin sinasinf cosfB] . We now ex-

plain how to formulate the linear system to solve for 70x.

1) IMU-induced local motion: Leveraging the inertial
preintegration, we integrate the IMU measurements in the time
interval [to,?)] to compute the relative motion in the local,
instead of the global, frame of reference {Iy} [see (24), (25)
and (26)]:

FR:= AR (49)
1

fopy, == "v, ATy, + §I°gAT;f + Py, (50)

fovy, ="vy, +gAT, + "By, (51)

where ATy, = (t; — to) is the time span for integration,

EAR,oay, and 0B, are obtained by IMU preintegra-

tion [81]. These can also be computed by rotating the orienta-

tion and velocity with g]R and computing the relative position
I

change "py, = YR(“pr, — “pr,)-

2) Camera-induced up-to-scale relative motion: With the
visual measurements available in the time window [t,, tx], we
efficiently derive the relative motion direction, without relying
on 3D features. The result is summarized as follows:

Proposition 1. Given camera bearing measurements {bi.} of
environmental features with known camera—IMU extrinsics,
the up-to-scale relative translation direction t of the platform
is obtained as the eigenvector corresponding to the smallest
eigenvalue of

M

M= Z n;n, (52)
i=1

where n; = |lob!|ob} denotes the normal vector of the

epipolar plane formed by two camera observations represented
in first IMU frame {I,}.

Proof. As shown in Figure 3, consider an environmental
feature f; observed by two camera frames {C1} and {Cs}.
Each observation bi, is a 2D bearing measurement from the
k-th camera frame to the ¢-th feature. Based on the two-
view geometry [89], an epipolar plane is thus formed with
the two bearings and the relative pose t (e.g., see AC;Cof;
in Figure 3). To solve for the relative motion, we exploit the
fact that the normal of any epipolar plane is perpendicular
to t, which allows us to formulate an eigenvalue problem of
M as defined in Eq. 55. Note that in this example, n; is the
normal direction of the epipolar plane AC, Csf;. The direction
t corresponds to the eigenvector associated with the smallest
eigenvalue of M. Specifically, the normal direction n; of the
epipolar plane AC;Casf; can be computed as (see Figure 3):

n; = [°b | bl (53)

where b} = ’RLRbD], is the bearing measurement of the
feature f; rotated to the local IMU frame {Iy}. Note that the
extrinsic calibration between the IMU and camera is assumed
to be known. Geometrically, as the relative translation t is the
intersection of all the epipolar planes with its corresponding
camera frames, all the normals of these epipolar planes are
perpendicular to t, such that:
M
njtzO = niniTt:0 = Zninj t=0
i=1

———
M

(54)
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which implies that the relative motion t is an eigenvector
corresponding to the zero eigenvalue (or null vector) of matrix
niniT and thus matrix M, if noise free [73]. Although the 3x 3
matrix M ideally is rank-2 with the null space spanned by t,
given noisy measurements in practice, M would become full-
rank and thus t should be the eigenvector corresponding to the
smallest eigenvalue. As such, determining the relative trans-
lation direction becomes an eigenvalue problem. Performing
eigenvalue decomposition of M yields:

M [t e es]Diag(A, A, ho) [t €1 €] (55)

where the diagonal matrix of eigenvalues arranged in an
ascending order. We thus have computed the up-to-scale trans-
lation (relative motion direction) t, as well as the eigenvectors
e; and e, corresponding to the larger eigenvalues A; and
Ag. O

eig.

For convenience, we define e := [e1, es], which lies in the
plane orthogonal to t (i.e., t L e) and will be used in the
subsequent linear system formulation [see (62)].

3) Linear system: By combining the IMU-induced relative
motion (with scale) and the camera-induced direction (without
scale), we can then eliminate the unknown scale and recover
the initial state through a linear system. The result is summa-
rized below:

Proposition 2. Given IMU preintegration over [ty, ], camera
bearings with known camera—IMU extrinsics, and the relative
translation direction t (with its orthogonal basis e, such that
et =0), the initial state 1°x can be obtained by solving the
linear system

e'Alox =e'b,
where A and b are constructed from IMU integration and

extrinsics.

Proof. Note that in the following, we use the two keyframes
{C:} and {C5} in Figure 3 to illustrate our derivations:

(56)
(57)

st = IOPCQ - IopCl
=Top, —py, + (gR - ﬁR) "pc

where s is the unknown scale, and f°p;, and op;, are
computed by integration with IMU measurements [see (25)]:

1
hopy =C%py, + v, ATy + 510 gAT? + ooy, (58)
1

pr, = pr, + Vi AT + SOBATE + 0y, (59)

Substituting these into (57), we have:

Io
st = [AT, — AT) (AT — AT?)] [ I;’gfﬂ}
—A
+ oy, ~ oy, + (FR-PR) b (60)
b

= st+Al'x=b (61)

To further improve the efficiency in solving the above linear
system (61), we remove the dependency of the unknown
scale s by projecting (61) onto the nullspace of t, such that:

e Al)x=¢eb (62)

10

where we have employed the fact that e "t = 0. O

Interestingly, as the eigenvectors e have already been com-
puted during the eigenvalue decomposition of M (55), we
effectively eliminate the need for redundant computations. It
is worth mentioning that the proposed method is naturally
applicable to static motion, as s will be close to zero, the
ambiguity of translation direction does not negatively impact
the system. Importantly, as compared to traditional initializa-
tion methods (e.g., [14], [23]), the proposed linear system (61)
does not recover 3D feature positions, offering the following
key advantages:

e Robust to outliers: Without estimating 3D features, the

influence of outliers on the solution is minimized.

e Robust to small parallax due to low excitation: Since
feature positions are not explicitly recovered, even if
some features are near rank-deficient, it does not lead
to degeneracy.

o Better efficiency: Without including 3D features, the prob-
lem reduces to a 6x6 linear system which is solved in
constant time. The complexity with respect to the number
of keyframes, k, is O(k?), but since k is typically small
(e.g., 3-5 frames), this is marginal. The overall complexity
is dominated by the linear dependence on the number
of features, O(M). In contrast, methods that recover
3D features have the complexity of O(M?), making our
approach significantly more efficient.

B. SRF Refinement

Due to measurement noise, the linear system solution (62)
— though fast — inevitably would be inaccurate in practice
especially given an extremely small initialization window. We
thus perform iterative updates with SRF to refine the full (not
minimal) state and the corresponding covariance, ensuring the
successful operation of subsequent VINS. The full state vector
of initialization is defined as:

Xal = [Xj XHT (63)
xK =[x}, xi ] (64)
xp = [Cf] STl (65)
xr, = |&q" pj, “vj b, bl (66)

where xx denotes the keyframe states and xp is the key
features during initialization. In contrast to the commonly
used dynamic initialization pipeline (e.g., [14]), which solves
the VI-BA problem using an optimization solver in the in-
formation form, our approach leverages iterative SRF update
and offers several advantages: (i) seamless integration with
the SRF-based VINS, (ii) improved computational efficiency
and reduced numerical issues while enabling iterative error
refinement from relinearization, and (iii) direct covariance
computation without the need for matrix inversion.

In particular, we first use the IMU readings to propagate the
keyframe states and their corresponding square-root covari-
ance (2), and use the obtained pose to triangulate the features,
then use the feature-bearing measurements to iteratively update
the states. For clarity, we use a single key feature, ij, as an
example. Its measurements are stacked and linearized as [see
(32) and (33)]:

z =h(xg,“f;) +n (67)
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= 0 ~HPxY +HYCHY 40 (68)

where H(I? and H%) are the Jacobians, and 5(([? and Gf](l)
are the error states for keyframes and key feature at the [-
th iteration. We perform a QR decomposition on the feature
Jacobian Hp, followed by a left multiplication of the full
system, which results in two decoupled systems. This step is
analogous to the process shown in Egs. (36) and (37), where
we apply the same technique. For brevity, we omit the detailed
derivation here and refer readers to that earlier discussion.

r(ll) _ H(Il()l
rg) B Hy()z
For each key feature, we construct the linear systems as
described above. Thus, with all the features, we stack its corre-
sponding bottom system (69) and perform the proposed LLT-
based SRF update for the key state (i.e., xgl(ﬂ) = xﬁ? + dxgl()
[see (11)]). Then we can update each key feature estimate with

the top system of (69) as:
~ ~ —1
G G0 4 O (0 Y axd) )

This process of linearization and update of state estimate is
repeated until convergence, while we update the square-root
covariance only after being converged.

Note that this iterative SRF refinement allows us to directly
obtain the initial covariance for use in the subsequent v/ VINS.
We have chosen to initialize not only the IMU states but also
retain key features xr within the initialization window, along
with their covariance. This ensures smooth, tightly-coupled
integration into v/ VINS, enhancing its robustness, as discussed
in the following.

We first stress that our initialization consists of two main
steps, without and with 3D features involved:

O ..
zW 4 {Hgﬁ] ) +n  (69)

1) In the feature-less initialization step, our primary focus
is to estimate the initial velocity and gravity as quickly
as possible, without recovering 3D feature positions.
During SRF refinement step, we seamlessly transition to
v/ VINS, by initializing the inertial state with the SLAM
features and their corresponding covariance. These fea-
tures can be immediately tracked in the subsequent VINS
process and used for instant updates, preserving all infor-
mation within the initialization window.

2)

Note that traditional methods take a completely opposite
approach: they first recover the initial state using 3D feature
positions and then refine only the IMU states in a second
step. In contrast, our proposed feature-less linear system offers
robustness to outliers and small parallax, while significantly
improving efficiency. For the refinement step, our approach
retains features from the initialization window, enabling im-
mediate updates when new measurements of the same fea-
tures become available. This ensures that all information is
preserved, tightly coupled, and seamlessly transferred to the
VINS module. Traditional methods, by comparison, solve
only for the 15-DOF IMU state during refinement, which
requires additional time and frames for VINS to initialize new
features and operate effectively. Furthermore, SRF directly
accesses the state covariance without needing to invert the in-
formation matrix—a process commonly required in BA-based
initialization methods—thereby avoiding potential numerical
instability, particularly in challenging initialization scenarios.
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TABLE II
SIMULATION PARAMETERS AND PRIOR STANDARD DEVIATIONS FOR
MEASUREMENT PERTURBATIONS.

Parameter Value Parameter Value
Gyro. White Noise ~ 2.0e-4  Gyro. Rand. Walk  2.0e-5
Accel. White Noise  5.0e-4  Accel. Rand. Walk  4.0e-4

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400

Num. Clones 11 Tracked Feat. 100

Max. MSCKEF Feat. 40 Max. SLAM Feat. 50
TABLE III

RMSE VALUES FOR ORIENTATION (DEG.) AND POSITION (M) BASED ON
200 RUNS ON UD-ARL WITH DIFFERENT ESTIMATORS.

Methods EKF SRF (QR) SRF (LLT) SRIF
double 0.957/0.146  0.957/0.146 0956/ 0.146  0.957 / 0.146
float 0.960 /0.146  0.959/0.146 0958 /0.146  1.045/0.174

As a result, by leveraging these advantages, our initialization
method achieves high robustness and efficiency.

VI. NUMERICAL STUDIES OF LLT-BASED SRF

We now present the simulation results of the proposed LLT
update method for SRF, showcasing its improved numerical
stability and efficiency. To ensure a fair comparison across es-
timators, we use OpenVINS [36], which implements an EKF-
based approach as the baseline (denoted EKF(d)), along with
a float version (EKF(f)). Additionally, we evaluate double-
and float-precision versions of the square-root information
filter (SRIF(d) and SRIF(f)) and the proposed square-root
covariance v/ VINS (SRF(d) and SRF(f)).

A. Accuracy and Robustness of SRF

We first aim to demonstrate that +/VINS offers improved
numerical stability compared to other forms of estimators. To
evaluate this, we use a 30-minute, 2.4 km UD-ARL trajectory
(see Figure 4) and generate realistic visual bearing and inertial
measurements, as summarized in Table II.

Table III reports the average Root Mean Square Error
(RMSE) of different estimators based on 200 Monte Carlo
runs. In Figure 5, the top two plots show the orientation
and position errors of various estimators with both double

Fig. 4. Simulated 2.4km UD-ARL trajectory.
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Fig. 5. Top: Orientation/position errors of different estimators performed

on UD-ARL dataset. ‘d’ is for double; ‘f* is for float. While most estimators
perform similarly and are hard to distinguish from the plot, SRIF(f) shows a
clear drop in accuracy over time. Bottom: Condition numbers of the square-
root information matrix (purple line) and the Cholesky decomposed matrix
C (green line, see Eq. (11)), presented in both standard (scientific) and
logarithmic scales.

and float precision. The bottom two plots the standard and
logarithmic condition numbers of the square-root information
matrix (purple) and the C matrix [see Eq. (11)] for the LLT-
based update over time (green). Given the covariance matrix
P, the square-root information matrix R is RTR = P~L.
Note that this figure only presents the LLT-based SRF results,
as the different update methods are expected to exhibit nearly
identical accuracy performance, as shown in Table III.

Note that the authors have carefully reported the condition
numbers of these two matrices to evaluate numerical stability.
For SRIF, the most challenging step is inverting the square-
root information matrix R, so we report its condition number.
For the LLT-based SRF, two numerical challenges arise: i)
the Cholesky decomposition of C, which requires a positive
definite matrix, and ii) the inversion of F'. But F is the square
root of C, we plot the condition number of C as it also reflects
that of F'. From Figure 5, it is clear that the condition number
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Fig. 6. Comparison of update efficiency between P-QR and LLT update
methods. The top plot illustrates the update times for the two methods: the blue
line represents the original P-QR-based method, and the green line represents
the proposed LLT-based method. The bottom plot shows the time ratio of
LLT to P-QR update times (LLT/P-QR), indicating that the LLT-based method
becomes increasingly efficient as the number of tracked features increases.

of C (green line) remains stable, with a magnitude close to
1 and a maximum below 102, demonstrating the improved
numerical stability of the proposed SRF. Intuitively, F~T
serves as the transition matrix between Uy, and Uy, (the
square-root covariance before and after propagation). As long
as the measurement uncertainty (i.e., camera measurement
noise) is not significantly smaller than the state uncertainty
after propagation, we expect F~ T to be close to the identity
matrix and well-conditioned. Consequently, C will share the
same benefit, which is almost always the case in practical
VINS applications.

From the figure, we also observe as the condition number of
R grows larger than 2¢®, both orientation and position errors
of SRIF(f) start showing a degraded performance compared
to other estimators. This can also be seen in Table III, the
float SRIF is inaccurate with large RMSE values. This is
likely due to the numerical issue when performing inversion
on ill-conditioned R to solve for state update under limited
machine precision (see Chapter 3.5.1 in [49]). In contrast,
the covariance-form estimators, both EKF and the proposed
SRF, no matter which update method is used (i.e., P-QR or
LLT) demonstrated consistent performance regardless of using
double or float. This is evident from the comparable RMSE
values in Table III, as well as the consistent error trends in
Figure 5.

B. Efficiency of LLT-based SRF Update

In recent work [9], the efficiency improvement of the P-
QR-based SRF compared to other estimators was reported.
Here, we aim to thoroughly compare the novel LLT-based
SRF with P-QR, demonstrating its efficiency improvements
with theoretical guarantees, as shown in Table I. To make
our experimental evaluation more comprehensive, we will also
evaluate and compare all forms of estimators in the following
sections.

In this numerical study, we fix the state size and vary
the number of tracked features to evaluate performance with
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Fig. 7. The impact of the number of iterations for initialization accuracy in
monocular setup with the 0.5-second window in TUM-VI Dataset.

different numbers of measurements. All features are treated as
MSCKEF features and the results are reported in Figure 6.

The top figure plots the update time (in ms) for both
methods as the number of features changes, while the bottom
figure shows the ratio of the update times (i.e., LLT/P-QR).
The results clearly demonstrate that the LLT-based method
is significantly more efficient, with the performance gap
widening as the number of features increases. Moreover, the
time ratio between the two methods (bottom figure) decreases
progressively as the number of measurements becomes more
dominating and, in the end, converges to roughly the theoreti-
cal ratio %, which proves the FLOPs analysis as shown in the
Table I.

VII. EXPERIMENTAL EVALUATION OF SYSTEM
INITIALIZATION

To demonstrate the enhanced performance of the proposed
novel dynamic initialization method, we validate it using two
widely recognized and publicly available visual-inertial (VI)
datasets: EuRoC MAV [90] and TUM-VI [91]. We compare
our method (Ours) with the state-of-the-art dynamic initializa-
tion approach in OpenVINS, a reimplementation of Dongsi’s
method [92], referred to as DS in the following sections. We
also evaluate the performance with both monocular and stereo
cameras. In stereo setup, except for independent KLT tracking
of both cameras, we also perform tracking between each stereo
pair to formulate stereo constraint. The parallax gained from
stereo allows easy feature triangulation even in not fully ex-
cited motion. To evaluate initialization performance, we divide
each sequence into 10-second windows, run initialization at
each entry point, and average the results across all runs. The
keyframes are selected based on the average parallax, and all
the features obtained from tracking are used to formulate the
linear system constraints.

A. Initialization Accuracy

We begin by reporting the accuracy of the initialized scale
and gravity under various setups, as shown in Figure 8. The
figure presents the gravity error (top) and the scale error
(bottom) for different initialization methods, including DS
(red), our method without iterative SRF refinement (blue), and
our method (green), evaluated with varying window sizes (in
second) for both monocular and stereo setups. Specifically,
a Sim(3) transformation is fitted between the estimated and
ground truth trajectories. The scale error is computed as
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100 x (max(s, 1/s)—1), where s represents the scale obtained
from the Sim(3) transformation.

From the figure, it is evident that the initialization errors
decrease as the initialization time increases due to the avail-
ability of more measurements. However, the key advantage
of the proposed initialization method lies in its ability to
successfully initialize within a very short time frame (0.1
s), where DS method fails. The results also highlight the
improved performance achieved with the iterative update in
SRF especially with small window sizes. To further illustrate
this, we compare the gravity and scale errors across different
numbers of iterations, as shown in Figure 7. It is evident that
the errors consistently decrease with an increasing number
of iterations and eventually converge. Interestingly, we also
observe that as the window size increases, the accuracy
gain from refinement decreases. Because with the increasing
motion for inertial measurements and increasing parallax for
visual measurements, the signal-noise-ratio increases. Thanks
to the robust novel constraint formulation, our method achieves
desirable accuracy without further refinement. This indicates
the possibility to reduce or eliminate iterations for further
efficiency gains, as discussed in the following section.

B. Successful Initiation Rate

We now present the success rates based on our defined
criteria for success under various system initialization setups.
Traditionally, the success rate is defined by dividing each se-
quence into small windows, running initialization at each entry
point, and calculating the percentage of successful dynamic
initializations. It is important to note that we have applied
a stricter criterion for success, given the strong performance
of our proposed method. Our criterion ensures initialization
is tested at various points within each sequence, assessing
both the accuracy of the initialization window poses and the
subsequent VIO performance using the initialization results.
The criteria are as follows:

« We divide each sequence into 10-second windows, run the
initialization with a different initialization window (from
0.1 to 1s) at each entry point. The initial states must be
successfully solved for all runs in the sequences, includ-
ing ensuring that the linear system can be solved without
issues. Additionally, the initial states must converge after
refinement, and their covariance must be successfully
obtained.

The position ATE of VIO within the first 10 seconds must
remain below a predefined threshold.

Given these criteria, the results for the Euroc MAV dataset
are shown in Table IV, while Table V reports the results for
the TUM VI dataset. In these tests, we vary the initialization
window (from 0.1s to 1.0s) and report the success rates for
different thresholds (i.e., 0.1m, 0.3m, and 0.5m). In the tables,
success rates higher than 95% are highlighted in green, while
those below 95% are marked in red. Results are not reported
if the defined success criteria are not met.

The results clearly demonstrate that the proposed SRF
method consistently achieves a higher success rate compared
to DS. For instance, with monocular setup initialization win-
dows of 0.5s, 0.75s, and 1.0s, SRF significantly outperforms
DS for both datasets. Our method also consistently out-
performs DS, especially in more challenging scenarios. For
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Fig. 8. Initialization gravity error and scale error across different window sizes (time) and datasets are evaluated for both monocular and stereo setups. The
results are compared using the DS method, our proposed method, and our method without iterative refinement, denoted as Ours (NR).
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Fig. 9. Successful initialization rates for the Euroc MAV dataset (left) and TUM VI dataset (right) with a 0.5m VIO position error threshold. The results
compare the DS method with 0.5s and 1.0s windows to our method with 0.1s, 0.5s, and 1.0s windows, represented in different colors.

TABLE IV
INITIALIZATION SUCCESS RATES ON THE EUROC MAV DATASET.
Threshold (m) | DS | Ours
\ 0.1s 015s 02s 03s 05s 075s 1.0s \ 0.1s 015s 02s 03s 05s 075s 1.0s
Mono 0.3 - - - - 54.9 63.7 75.2 69.9 83.2 82.3 86.7 93.8 86.7 91.2

0.1 - - - - 19.5 28.3 30.1 33.6 434 48.7 51.3 47.8 51.3 47.8

05 - - : - 681 761 823 | 796 8.6 8.6 920 1000 965 982
0.1 ; ; - 451 442 478 434 | 637 655 681 690 646 628 611

Stereo 0.3 - - - 84.1 86.7 82.3 85.8 94.7 96.5 96.5 96.5 96.5 95.6 94.7
0.5 - - - 903  92.0 90.3 93.8 96.5 99.1 99.1  100.0 99.1 98.2 98.2

Note: This table compares the DS method and our proposed method across different initialization window sizes for monocular and stereo setups on
the TUM VI dataset. Rates > 95% are shown in green and bold, while rates < 95% are shown in red. Missing entries indicate failure to meet the
defined success criteria.

TABLE V
INITIALIZATION SUCCESS RATES ON THE TUM VI DATASET.

Threshold (m) | DS ‘ Ours
\ 01s 0.15s 02s 03s 05s 075s 1.0s \ 01s 0.15s 02s 03s 05s 0.75s 1.0s
0.1 - - - - 71.5 71.5 76.2 75.0 82.5 91.2 93.8 96.2 100.0 96.2
Mono 0.3 - - - - 90.0 90.0 96.2 92.5 91.2 96.2 97.5 98.8 100.0  100.0
0.5 - - - - 95.0 93.8 96.2 96.2 93.8 97.5 100.0 98.8 100.0  100.0

98.8 100.0  100.0 100.0 100.0 98.8 100.0
100.0  100.0 100.0 100.0 100.0 98.8 100.0
100.0  100.0 100.0 100.0 100.0 98.8 100.0

Stereo 0.2 - - - 97.5 98.8 100.0  100.0

0.1 - - - 91.2 86.2 92.5 98.8
- - - 97.5 100.0 100.0 100.0

Note: This table compares the DS method and our proposed method across different initialization window sizes for monocular and stereo setups on
the TUM VI dataset. Rates > 95% are shown in green and bold, while rates < 95% are shown in red. Missing entries indicate failure to meet the
defined success criteria.
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Fig. 10. Visual-inertial tracking successful rate over different position error
threshold using dynamic initialization in EurocMAV Dataset with 0.5-second
initialization window and monocular setup with and without initialization of
SLAM features in the state.

example, for the Euroc MAV dataset (shown in Table 1V),
our method successfully initializes VIO with a 33% success
rate for a 0.1m position error threshold and a 79.6% success
rate for a 0.5m position error threshold using a 0.1s window.
In contrast, the DS method fails to guarantee successful
initialization in such a short time period. These results demon-
strate that the proposed method is well-constrained, robust to
changes in window size, and significantly more efficient and
reliable compared to DS. To further illustrate this, Figure 9
shows the success rates for both the DS method and our
proposed method under 0.5s and 1.0s initialization windows.
Additionally, we include results for our method with a 0.1s
window. From this plot, it is evident that, given the same
initialization window, our method consistently outperforms DS
(e.g., Ours (0.5s) achieves a higher success rate compared to
DS (0.5s)). Impressively, Ours (0.1s) not only outperforms DS
(0.5s) but also achieves comparable performance to DS (1.0s),
demonstrating that our method is ultrafast and highly effective,
even with minimal initialization windows.

We also investigate the inclusion of SLAM features and
their impact on initialization, as shown in Figure 10. Incor-
porating SLAM features significantly increases the success
rate. As discussed in Section V-B, keeping SLAM features
allows more information to be preserved after initialization,
effectively enhancing the robustness and improving the per-
formance of VIO. Notably, despite the inclusion of additional
states (i.e., SLAM features), the proposed method achieves re-
markable efficiency, enabled by our streamlined linear system
formulation and SRF update methods, as demonstrated in the
following section.

C. Initialization Timing Analysis

We report the runtime of our initialization method across
various window sizes on both a laptop and a Jetson Nano,
compared with the DS method, as shown in Figure 11.}
Results for the DS initialization method are not reported
for initialization windows shorter than 0.5s because it fails
under these conditions. We should note that our refinement
time also includes the time used for feature triangulation.
But in DS’s method this is calculated in initial guess step.

3Computational results were performed in a single thread on Laptop with
an Intel(R) Core(TM) i7-11800H @ 2.30GHz and Jetson Nano with ARM
Cortex-A57 4 Core @ 1.5GHz.
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For covariance recovery, which is part of the refinement
stage, DS only includes recovery of the 15-DoF IMU state,
while we also allow for recovery of covariance of SLAM
features. The results clearly show that the proposed method
with a 0.1s initialization window is the most efficient. For
a 0.5s initialization window, ours demonstrates significantly
improved efficiency compared to DS. Notably, when running
in Jetson Nano, DS’s method can not be initialized before
the next camera measurement comes (for a 20 Hz camera,
dynamic initialization is required to finish within 50 ms to
guarantee real-time), while our system can still achieve real-
time performance.

This improvement stems from several key factors. First, the
proposed method avoids the need to solve for feature positions
in the linear system, significantly reducing the computational
time required for generating the initial guess. Second, the
efficient iterative update mechanism effectively minimizes er-
rors while maintaining computational efficiency. Furthermore,
the proposed method provides direct access to the covariance
matrix without requiring the inversion of the information
matrix—a process that is computationally expensive and nu-
merically unstable, often necessitating inflation of the initial
covariance to stabilize the system. These advantages make ours
method not only accurate and robust but also highly efficient.

We further discuss the 0.1-second window (3 keyframes)
and 0.5-second window (5 keyframes) reported in Figure 11
for our method to provide a deeper understanding. The key
difference lies in the number of keyframes and the total num-
ber of measurements. As discussed in Section V. at the initial
guess stage, the computational complexity of our method is
quadratic with respect to the number of keyframes and linear
with respect to the number of tracked features per frame.
Therefore, using only three keyframes requires approximately
half the computation time compared to five keyframes. In the
refinement stage, the measurement size has a greater impact
than the state size, as the latter remains relatively small. Since
our refinement method has linear complexity with respect
to measurements, the computation time for 5 keyframes in-
creases linearly compared to 3 keyframes. As mentioned in
Section VII-A, our method provides a good initial guess for
large initialization windows. When computational resources
are limited, it is possible to skip iterative refinement and
use a conservative initial covariance, allowing the system to
initialize in 0.6 ms on a laptop and 2.8 ms on a low-end
embedded system.

VIII. EXPERIMENTAL EVALUATION OF v/ VINS

In this section, we demonstrate the capabilities of v/ VINS in
comparison with state-of-the-art VINS. The system is tested
with both double-precision (v/VINS (d)) and float-precision
(VVINS (f)) versions. For comparison, we use Open-
VINS [36] in its original double-precision (OpenVINS(d)) and
implement the float-precision version (OpenVINS(f)), which
required tuning to avoid divergence due to negative covariance
diagonals. Additionally, we compare with RVIO2 [53], a
square-root inverse filter VIO with a robocentric state formu-
lation, and VINS-Mono [!4], an optimization-based sliding-
window VIO.

Since RVIO2 uses only MSCKEF features by default, result-
ing in a smaller state size, we also test in a similar configu-
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TABLE VI
AVERAGE ABSOLUTE TRAJECTORY ERROR (ATE) IN DEGREES/METERS.

Algo. V101 V102 V103 V201 V202 V203 MHO01 MHO02 MHO03 MHO04 MHO05
OpenVINS(d) 0.70/0.06 1.67/0.06 2.88/0.07 095/0.10 138/0.06 1.28/0.14 1.74/0.10 091/0.17 1.14/0.12 095/025 1.03/041
OpenVINS(f) 0.71/0.06 1.66/0.06 287/006 094/0.10 140/0.06 125/0.14 1.76/0.10 091/0.17 1.18/0.13 0.94/0.25 1.04/041

Vv VINS(d) 0.54/006 1.60/006 294/005 1.09/010 141/006 136/012 190/0.11 0.77/0.14 1.06/0.12 1.02/0.23 1.14/0.35
vV VINS(f) 0.54/006 165/0.05 268/006 109/0.10 148/0.06 1.17/011 197/0.10 0.74/0.14 088/0.11 099/025 1.13/0.35
VVINS\M) 0.63/0.07 1.73/0.08 1.76/0.07 0.80/0.07 139/0.09 148/0.14 2.18/0.16 057/0.15 159/023 0.59/0.14 0.49/0.30
vV VINS(L) 0.73/0.05 1.83/0.10 275/006 071/006 122/0.07 153/015 132/0.13 0.73/0.15 1.57/023 086/021 0.74/0.40

RVIO2 0.88/0.09 227/0.10 202/010 219/0.13 190/0.11 1.50/0.15 260/0.17 1.00/0.15 1.08/0.19 1.10/024 0.95/0.32

EqVIO 0.66/0.05 264/0.14 337/019 131/0.10 1.67/0.18 1.71/020 2.14/0.14 0.89/0.15 1.11/0.09 2.09/035 1.29/0.23
VINS-Mono  0.82/0.07 2.74/0.10 5.15/0.15 213/0.09 257/0.13 343/029 0.78/020 086/0.18 1.82/0.23 251/041 0.94/0.29

Note: ‘d” and “f* indicate the use of double and float precision, respectively. vV INS(M)uses float precision and MSCKF features for comparison
with RVIO2. vV INS(L)is a lightweight configuration optimized for ultra-efficiency.

TABLE VII
ESTIMATOR RUNTIME (MS) EXCLUDING FEATURE TRACKING ON
EUROCMAYV (LAPTOP).

OpenVINS VVINS +VINSM) +VVINS(L) RVIO2 EqVIO VINS-Mono
Double 4.2 2.4 - - - 0.9 224
Float 3.0 1.7 0.7 0.4 18 - -

Note: Estimator runtime (ms) excluding feature tracking on EuRocMAV
(Laptop). The efficiency of EqQVIO primarily stems from its relatively
compact state size compared to other methods. However, further speed
improvements may be achieved by reformulating the system in SRF form.

ration (15 clones, 200 tracked features, all MSCKF), denoted
as v VINS(M), for a fair comparison. Finally, v/ VINS(L) is
a lightweight setup that features ultra-efficiency, which tracks
150 features, keeps a maximum of 4 clones, and 15 SLAM
features, and uses a maximum of 20 MSCKEF features in the
update. We also compared another state-of-the-art EKF-based
system EqVIO [38], [39]that features equivariant formulation
and impressive computational efficiency. In the following, we
report the performance of the above mentioned systems on the
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Fig. 12. Estimator runtime (ms) excluding feature tracking on EuRocMAV
(Jetson Nano).

EurRoC MAYV dataset [90] and the Aria Everyday Activities
Dataset [93].

1) EurRoC MAV Dataset: To evaluate this dataset, we use
the default configuration of OpenVINS. This setup extracts
200 sparse features, keep 11 clones, and tracks up to 50
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TABLE VIIL
RESULTS ON THE ARIA EVERYDAY ACTIVITIES DATASET.

Algo. Location 1  Location 2  Location 3  Location 4  Location 5 Avg. Runtime
OpenVINS*  1.02/005 125/0.05 122/004 130/0.04 138/0.07 1.23/0.05 2.1
VINS 1.13/0.04 095/0.04 1.13/004 142/005 1.15/0.06 1.16/0.05 0.9

Note: Accuracy is reported as Average Absolute Trajectory Error (ATE) in degrees/meters; estimator runtime is in microseconds.
*Some OpenVINS runs diverged (position error > 1m); only successful runs are reported, which may unfairly favor v/ VINS.

Success Rate in AEA Dataset

100 A
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Fig. 13. Successful rate over different position error thresholds with dynamic
initialization in Aria Everyday Activities (AEA) Dataset.

Fig. 14. Example images from the Aria Everyday Activities (AEA) Dataset.

SLAM features and 40 MSCKF features. The system performs
online calibration for camera-IMU extrinsics, time offsets, and
camera intrinsics. Evaluation is conducted using only the left
camera, with initialization performed from a static state.

The averaged ATE values are reported in Table VI. It is
clear that the estimation accuracy of v/ VINS(d), v/ VINS(f),
OpenVINS(d), and OpenVINS(f) are very similar as expected.
They are not exactly the same in the real world due to two
reasons. First, x? test is adopted to reject outliers and robustify
the estimator and might introduce randomness. For example, in
certain cases, v VINS(d) might reject measurements that pass
x? test in v/ VINS(f) because of slight numerical differences,
this will cause different versions to use different measurements
and have different performance. Second, OpenVINS performs
a “sequential” update, which first processes MSCKF features
and then SLAM features for the consideration of efficiency,
while v/ VINS performs the update all at once. This also intro-
duces differences in the state linearization points. Compared
with RVIO2, EqVIO and VINS-mono, v/ VINS also achieves
superior performance in almost all the sequences. Surprisingly,
even v VINS(M) and v VINS(L) achieves similar or even
better performance than the other systems.

We then look into the efficiency of the estimators as reported
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in Table VII. Feature tracking is also a crucial components in
VINS, however, as it is not the focus of this work, we exclude
its runtime in the efficiency analysis. Clearly, v/ VINS is much
faster than OpenVINS, reducing the runtime by half. Regard-
less of being in double or float format, v VINS consistently
prevails over OpenVINS. Remarkably, the double precision
v VINS even outperforms the float OpenVINS. VINS-Mono
runs the slowest as it performs iterative optimization. RVIO2 is
also developed in float and shows excellent efficiency, but with
a similar setup and a fair comparison, v VINS(M) still pre-
vails. EqQVIO achieves strong efficiency, outperforming vanilla
VVINS but remaining less efficient than +/VINS(L) and
VVINS(M). Its efficiency stems primarily from the SLAM-
based state design: unlike MSCKF-based VINS, which main-
tains multiple clones, EqQVIO keeps only a single clone while
tracking a small number of SLAM features, thereby reducing
both state and measurement dimensions, while compromising
accuracy. Importantly, however, EQVIO’s key novelty lies in its
use of Lie-group symmetry to improve estimator consistency.
This contribution is orthogonal to our work, implying that a
VIO system can, in principle, combine Lie-group symmetry
with square-root filtering. In EqVIO, the Riccati matrix plays
a role analogous to the covariance in the EKF. Tracking it
in square-root form allows the use of SRF-based propagation
and update methods, enabling robust operation under lower
floating-point precision, exploiting triangular and symmetric
structures for additional speedups, while simultaneously bene-
fiting from the improved consistency offered by the equivariant
formulation. Finally, v VINS(L) achieves the best efficiency
with 0.4 ms in estimator runs, which means it can run over
2.5kHz, especially suitable for running on a computation-
constrained platform. The efficiency gain mainly comes from
the proposed LLT-based SRF update method, which fully
explored the problem structure (state order, upper-triangular
covariance, Jacobian structure, avoid redundent computation)
as discussed in Section IV.

We also report the estimator runtime on the Jetson Nano,
as shown in Figure 12. VINS-Mono fails to meet the real-
time requirement (50 ms), v VINS demonstrates the highest
efficiency among systems with features in the state (e.g., Open-
VINS and VINS-Mono) and achieves comparable efficiency
to RVIO2, which uses only MSCKF features. v/ VINS(L)
requires only 3.1 ms in an estimator run, which is almost 10
times faster than the default baseline OpenVINS, achieving
ultra-efficiency.

2) Aria Everyday Activities Dataset: Aria Everyday Activ-
ities (AEA) dataset [93] provides an ego-centric perspective
view recorded from Aria AR glasses, as shown in Figure 14.
It contains 143 daily activity sequences recorded by multiple
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users in 5 indoor locations. The Aria glasses have two 10
Hz cameras and two IMUs. In the evaluation, both cameras
are used, and only the right 1000 Hz IMU is used in our
evaluation. The challenge for this dataset is that the two
tracking cameras have limited view overlap so that does
not provide good stereo depth. Also, the dataset is recorded
mostly within motion at the beginning and requires dynamic
initialization. In certain sequences, the cameras face a white
textureless wall or door or have a large portion of dynamic
objects (e.g. the user carries an object in front of the glass)
further challenges feature tracking and the overall system
robustness.

In our eveluation, OpenVINS and +/VINS use the same
setup, which tracks 200 features, uses a maximum of 6 clones,
15 SLAM features, and 40 MSCKF features in the update.
Factory calibrations parameters from the dataset are used. For
dynamic initialization, both systems use a 0.5-second window
with 5 keyframes.

We first report the success rate for this challange dataset,
reported in Figure 13. In this test, after initialization, the
subsequent VINS is run for the full trajectory, and the po-
sition error is evaluated at the end. The figure illustrates the
percentage of runs that result in VIO achieving a position error
below a certain threshold. It is easy to observe that v/ VINS
significantly outperforms in this challenging AR/VR scenarios,
achieving over 95% success with VIO errors under 0.1m at the
end, compared to just 70% for OpenVINS.

We also report the VIO accuracy and estimator runtime on
the AEA dataset in Table VIII. For OpenVINS, only successful
runs with position errors under 1 meter are included, whereas
full results are presented for +/VINS, as all runs were suc-
cessful. Despite this seemingly ‘unfair’ comparison favoring
OpenVINS, v/ VINS demonstrates superior accuracy. Runtime
performance is also highlighted, with v/ VINS taking 0.9 ms
compared to OpenVINS’s 2.1 ms. Together with previous
results, this evaluation further confirms the superior efficiency

of v/ VINS.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a complete, robust and fast
square-root VINS (v/VINS) with a faster-than-ever dynamic
initialization which is able to robustly initialize the system
even in just 100 ms with 3 keyframes. Our system sets a new
VINS benchmark, offering over twice the speed, improved nu-
merical stability, and enhanced robustness compared to SOTA
algorithms of 3D motion tracking. The square-root covariance
filter (SRF) offers substantial benefits for VINS, especially
in embedded systems, thanks to its improved numerical sta-
bility and efficiency. However, exploiting these advantages
has been hindered by inefficiencies in the update process,
particularly with large measurements. Building on a recent
work [9], this work proposed a novel LLT-based SRF update
method, which leverages the structure of the VINS problem
to achieve high efficiency and operational effectiveness in
v/ VINS. Additionally, the proposed dynamic initialization in
v/ VINS ensures rapid and reliable initialization under minimal
conditions, marking a first in the literature. This capability is
critical for practical deployments, where quick reinitialization
is often required following system resets or failures. Extensive
numerical studies and real-world experiments have validated
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the robustness and efficiency of v/ VINS. Notably, our system
achieves twice the speed of SOTA methods while maintaining
high accuracy, even under challenging conditions such as 32-
bit single-precision float operations, and the real-world results
further demonstrate its superior performance across diverse
scenarios for edge computing platforms. Future work will
focus on extending v/ VINS to support multi-sensor fusion and
operate in dynamic environments, further improving scalability
and robustness. We hope this work—and its open-source re-
lease—opens new possibilities for fast, reliable, and resource-
efficient state estimation across a wide range of applications.
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