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Abstract— State-of-the-art monocular visual-inertial odome-
try (VIO) approaches rely on sparse point features in part
due to their efficiency, robustness, and prevalence, while ignor-
ing high-level structural regularities such as planes that are
common to man-made environments and can be exploited to
further constrain motion. Generally, planes can be observed
by a camera for significant periods of time due to their
large spatial presence and thus, are amenable for long-term
navigation. Therefore, in this paper, we design a novel real-
time monocular VIO system that is fully regularized by planar
features within a lightweight multi-state constraint Kalman
filter (MSCKF). At the core of our method is an efficient robust
monocular-based plane detection algorithm, which does not
require additional sensing modalities such as a stereo or depth
camera as commonly seen in the literature, while enabling real-
time regularization of point features to environmental planes.
Specifically, in the proposed MSCKF, long-lived planes are
maintained in the state vector, while shorter ones are marginal-
ized after use for efficiency. Planar regularities are applied to
both in-state SLAM features and out-of-state MSCKF features,
thus fully exploiting the environmental plane information to
improve VIO performance. The proposed approach is evaluated
with extensive Monte-Carlo simulations and different real-
world experiments including an author-collected AR scenario,
and shown to outperform the point-based VIO in structured
environments.

Video Demonstration
https://youtu.be/bec7LbYaOS8

AR Table Dataset
https://github.com/rpng/ar_table_dataset

I. INTRODUCTION AND RELATED WORK

Visual-inertial odometry (VIO) that fuses IMU and camera
measurements to provide efficient 3D motion tracking, has
emerged as a foundational technology for AR/VR appli-
cations [1]–[3], primarily thanks to its low-energy, small-
size, low-cost, and complementary sensing characteristics.
Substantial research efforts both in industry and academia
have recently been devoted to VIO algorithms [4], which
can be categorized broadly into optimization-based and filter-
based methods. The former formulates a nonlinear least-
squares (NLS) problem with all available measurements and
iteratively finds an accurate solution at a higher computa-
tional cost due to relinearization [5]–[8]. In contrast, filter-
based estimators such as the multi-state constraint Kalman
filter (MSCKF) [9] remain popular in resource-constrained
platforms due to their efficiency [10]–[15]. In particular, the
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Fig. 1: Environmental reconstruction example on the author-
collected AR table 06 (top) along with an AR display render
of two teapots on estimated planes (bottom).

MSCKF processes available visual bearing measurements
without keeping the point features in their state vector,
which is achieved by projecting the observations onto the
nullspace of the corresponding feature measurement Jacobian
and inferring feature-independent measurement residuals for
EKF update (i.e., linear marginalization [16]). Albeit, it
can selectively include SLAM point features in the state
– which are marginalized once lost – in order to exploit
local temporal map (or loop closure) information while still
bounding computational cost [17]–[20].

While the state-of-the-art MSCKF-based monocular VIO
approaches have efficient and robust point feature detection
and tracking mechanisms and achieve high-accuracy perfor-
mance [20], they are unable to utilize structural regularity
information (if any) between features, which could prevail in
man-made environments. Ideally, one could leverage pixel-
level dense depths to enforce structural constraints, but this it
is computationally expensive due to the large number of op-
timization variables (depth map) [21]–[25]. Given stringent
resources, it is challenging to extract high-level geometric
features such as planes from monocular images and reason
about inter-state structural regularities onto low-level point
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features. As such, existing literature has primarily focused
on explicitly detecting line and plane features with stereo or
depth sensors [26]–[29].

In particular, many methods have leveraged line features
in conjunction with Manhattan [30] or Atlanta world [31]
regularities, improving accuracy due to structured lines (e.g.,
aligned with building cardinal directions) that directly pro-
vide global attitude information [32]–[37]. As environmental
planes cannot be directly detected with a single monocular
camera since the depth is unavailable, generic depth sensors
that can directly measure environmental planes – such as
RGB-D [25], [26], [38], [39], 1D LRF [40], [41], or 3D
LiDAR [42]–[44] – have been fused with great success.
Similarly to line features, planar Manhattan frames have
been leveraged with success [45], [46]. Additionally, some
works have enforced cross-plane orthogonality, parallelism
[36], [38], or point-on-plane regularities [39], but require an
additional sensor which increases cost, computation, calibra-
tion complexity, and data association challenges. Recently,
deep-learning-based methods have become of interest due
to their ability to perform single-shot detection of planar
surfaces and normals [47]–[50]. For example, RP-VIO [51]
leverages a plane segmentation network [52] to separate
planar surfaces which are assumed to be static within a
dynamic environment and enforce point-on-plane camera
homography constraints. While this direction is promising,
it typically requires additional computational resources and
its generalizability is unclear.

Closest to our work, which leverages planar structural
regularities, is that by Rosinol et al. [53]–[55]. They proposed
a stereo VIO system that incrementally builds and estimates
3D meshes (planes) in-which point-on-plane structural regu-
larities are enforced during optimization. They have shown
that the inclusion of planar regularities improves both state
estimation and environmental mesh accuracy. This plane
detection method was extended to include lines within the
monocular VINS-Mono [7] framework in PLP-VIO [56],
which additionally enforced point-to-line and line-to-plane
regularities. Both only enforce structural regularities for ver-
tical and horizontal planes (with respect to gravity), require
the inclusion of planes in the state (increasing computation),
and may experience significant computational spikes when
the number of constraints grows.

This paper presents a new real-time monocular MSCKF-
based VIO system that efficiently extracts and enforces
structural regularities from environmental planes without
requiring an additional depth sensor or neural network.

The main contributions of our work include:

• We design an efficient monocular VIO estimator that
detects and enforces planar regularities through point-
on-plane geometric constraints, which is able to either
estimate long-lived SLAM plane features or directly
marginalize short-lived ones for efficiency. We also
investigate the planar regularization for both in-state
SLAM and out-of-state MSCKF point features.

• We develop a novel and robust plane detection and
tracking algorithm, which exploits pairwise compar-

isons of sparse VIO point feature norms and enables
real-time estimation without costly dense depth maps
or neural network computations.

• We validate the proposed system extensively in both
Monte-Carlo simulations and real-world experiments
and also release the author-collected datasets for the
benefit of the community.

II. OVERVIEW OF THE PROPOSED SYSTEM

In this section, we overview the proposed real-time
monocular MSCKF-VIO system termed ov plane, which
fuses IMU readings and sparse environmental 3D point
bearings. Algorithm 1 outlines the main steps of the pro-
posed approach, whose key idea is to take advantage of the
(typically) large spatial nature of planar structures to lengthen
feature tracks and thus further improve estimation accuracy.
To the best of our knowledge, this is the first time that a
monocular-VIO estimator is able to rigorously enforce planar
regularities within the MSCKF framework.

A. State Vector

At time tk, the system state xk consists of the current
navigation states xIk , historical IMU pose clones xC , and a
subset of 3D environmental (SLAM) point features, xf , and
(SLAM) plane features, xπ:

xk =
[
x⊤
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f x⊤
π

]⊤
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]⊤
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where I
Gq̄ is the unit quaternion (IGR in rotation matrix

form) that represents the rotation from the global {G} to
the IMU frame {I}; GpI , GvI , and Gpfi are the IMU
position, velocity, and i’th point feature position in {G};
bg and ba are the gyroscope and accelerometer biases;
xTi

= [IiG q̄⊤ Gp⊤
Ii
]⊤. We represent each plane, GΠ, in the

global frame with the minimal error state closest point (CP)
representation, which can be defined using the plane’s normal
vector Gn and distance scalar Gd as GΠ = GnGd [57].

B. Propagation with IMU Kinematics

The inertial kinematics are used to evolve the state from
time tk to tk+1 [58], [59]:

xIk+1
= f(xIk ,amk

,ωmk
) (4)

where the linear acceleration amk
and the angular velocity

ωmk
measurements are contaminated by zero-mean white

Gaussian noises. The MSCKF linearizes this nonlinear model
and propagates forward the state estimate and covariance [9].

C. Non-Planar Point Feature Update

The camera provides bearing observations of environmen-
tal 3D points. These observations can be used to update our
state using the following measurement function (note that we
here assume the global 3D feature model [20]):

zk = h(xk) + nk =: Λ(Ckpf ) + nk (5)
Ckpf = [x y z]⊤ = C

I R
Ik
G R

(
Gpf − GpIk

)
+ CpI (6)

Λ([x y z]⊤) =: [x/z y/z]⊤ (7)



where nk is the white Gaussian bearing measurement noise
and {CI R,CpI} is the camera-IMU rigid transformation.
Linearizing Eq. (5) yields the following system:

z̃k ≃ Hkx̃k + nk = HTk
x̃Tk

+Hfk
Gp̃f + nk (8)

where HTk
and Hfk are the measurement Jacobians in

respect to the observing pose x̂Tk
and 3D point feature

Gp̂f .1 We can then “stack” the measurements from different
timesteps to get:

z̃c = Hc
T x̃C +Hc

f
Gp̃f + nc (9)

where z̃c is the stacked measurement residual; Hc
T and Hc

f

are the stacked Jacobians; nc ∼ N (0,Rc) is the stacked
measurement noise (normally 1 pixel). We then perform EKF
update with two different types of non-planar point features:

• SLAM Point: The state xf contains Gpf , thus Eq. (9)
can directly update the state using the standard EKF
equations.

• MSCKF Point: For features that are not in the state
we project Eq. (9) onto the left nullspace of Hc

f (i.e.,
N⊤

f H
c
f = 0 [9]). Specifically, we can construct the

following system which is independent of Gp̃f :

N⊤
f z̃c = N⊤

f H
c
T x̃C +N⊤

f H
c
f
Gp̃f +N⊤

f nc (10)

⇒ z̃′c = H′
T x̃C + n′ (11)

This reduces the filter’s computational complexity since
the feature does not need to be inserted into the state.

In the next section, we will present in detail how the proposed
ov plane performs update with planar regularities.

III. PLANAR REGULARITIES

At the core of the proposed ov plane system are the pla-
nar regularities. In the following, we explain how to perform
MSCKF update with planar regularities, while addressing
practical challenges, which include efficient point-feature
updates constrained by (in-state and out-of-state) planes, and
robust initialization of plane features that are augmented into
the state. For clarity, we refer the reader to Sec. V-A for the
proposed real-time extraction and robust matching of planes
from sparse visual points.

A. Regularization-Constrained Measurement

The proposed VIO system enforces planar regularities
through point-on-plane constraints. Consider a point feature
Gpf that lies on the plane GΠ, we have:

zd =
(
Gp⊤

f
Gn− Gd

)
+ σd (12)

where σd is the noise that softens the constraint and should
be zero in the ideal case [60]. We linearized Eq. (12) to get:

z̃d = Hd
f
Gp̃f +Hd

π
GΠ̃+ σd (13)

We then stack the point feature bearing observation model,
Eq. (8), and point-on-plane constraint, Eq. (13):[

z̃c
z̃d

]
=

[
Hc

T

0

]
x̃C +

[
Hc

f

Hd
f

]
Gp̃f +

[
0
Hd

π

]
GΠ̃+

[
nc

σd

]
(14)

1Throughout the paper x̂ is used to denote the current estimate of a
random variable x with x̃ = x⊟x̂ denotes the error state. For the quaternion
error state, we employ JPL multiplicative error [59] i.e., δq̄ = q̄ ⊗ ˆ̄q−1 ≃
[ 1
2
δθ⊤ 1]⊤.

Algorithm 1 ov plane
Propagation:

• Propagate the state vector and covariance with inertial
readings [see Sec. II-B]

Feature Tracking:
• Extract visual features from the image, then perform sparse

KLT tracking and outlier rejection.
• Formulate a 2D Delaunay triangle mesh, detect, and match

planes [Sec. V-A]
State Management:

• Initialize SLAM point and plane features into the state if
sufficient observations / features [Sec. III-C]

• Merge planes if needed [Sec. III-D]
• Marginalize SLAM point and plane features from the state

when tracking is lost
Update:

• Update non-plane points [Eq. (9), (11)]
• Update MSCKF plane (out-of-state)

– Recover points and plane, then jointly refine their
estimates [Sec. III-B]

– Nullspace project Hπ pre-update [Eq. (22), (24)]
• Update SLAM plane (in-state)

– SLAM points directly update planes [Eq. (16)]
– MSCKF points are projected onto their Hf nullspace

before update [Eq. (19)]

⇒ z̃ = HT x̃C +Hf
Gp̃f +Hπ

GΠ̃+ n (15)

= Hxx̃k +Hπ
GΠ̃+ n (16)

where HT , Hf , and Hπ are the Jacobians for the IMU
poses, point feature, and plane feature, respectively; Hx =
[HT Hf ] and x̃k = [x̃⊤

C x̃⊤
f ]

⊤; and n ∼ N (0, I) denotes
the measurement noise after whitening.

B. Plane Recovery and Non-Linear Refinement
To enforce point-on-plane constraint, Eq. (13), we first

robustly recover the initial guess for the plane by performing
RANSAC [61] on a set of co-planar point features (details on
how we extract co-planar sets are in Algorithm 2). A plane
estimate can be solved from at least three points with the
following linear system:[

· · · Gpf,i · · ·
]⊤

π =
[
· · · 1 · · ·

]⊤
(17)

After obtaining π, the plane can be recovered by Gn =
π/||π|| and Gd = 1/||π||. The RANSAC inlier set is
selected based on the point-to-plane distance threshold, see
Eq. (12), with the best-recovered plane having the most
inliers and smallest average point-to-plane distance.

If a sufficient number of inliers are found, we perform a
joint refinement of the point features and plane with fixed
camera poses. SLAM points that lie on the plane are fixed
during optimization but are included to further improve the
plane estimate through their point-on-plane constraints. The
non-linear optimization problem is formulated using Eq. (5)
and (12) and is solved using ceres-solver [62] that takes 0.5-
1.5 milliseconds (ms).

C. Plane Feature Initialization
We wish to initialize long-tracked planes into states, which

offer dependable regularization information and constrain a
large number of co-planar feature points.

For an MSCKF planar point feature, in analogy to MSCKF
feature marginalization, we project Eq. (15) onto the the left



TABLE I: Simulation parameters and prior standard devia-
tions that perturbations of measurements were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Cam Freq. (hz) 10 IMU Freq. (hz) 400
Num. Clones 11 Total Planes 6

Avg. Feats on Plane 150 Max SLAM Pts 15

nullspace of Hf (i.e., N⊤Hf = 0) to get a residual function
for plane GΠ that is independent to the point feature:

N⊤z̃ = N⊤HT x̃C +N⊤Hπ
GΠ̃+N⊤n (18)

⇒ z̃∗ = H∗
xx̃k +H∗

π
GΠ̃+ n∗ (19)

For a SLAM point feature, Eq. (16) can be directly used.
After collecting co-planar MSCKF [Eq. (19)] and SLAM

[Eq. (16)] point feature measurements, we stack them into
the following linear system:

MSCKF :
SLAM :

[
z̃∗

z̃

]
=

[
H∗

x

Hx

]
x̃k +

[
H∗

π

Hπ

]
GΠ̃+

[
n∗

n

]
(20)

where z̃∗ and z̃ represent the MSCKF and SLAM point fea-
ture measurement residuals, respectively. We then leverage
the method in [20], [63] to initialize GΠ into the state.

D. Plane Merging
Planes are initialized into the state as soon as there are

sufficient observations, and they are continually refined with
new measurements. Over time, multiple planes may merge
into a single common plane to reduce redundancy in the
state. If more than one planes reside in the state, a pair-wise
state constraint update is performed to enforce equality, then
followed by the marginalization of all but one plane. For
example, plane GΠ1 and GΠ2 have:

zp =
(
GΠ2 − GΠ1

)
+ np (21)

where np is the small noise that softens the constraint [60].

E. Planar Point Feature Update
Given the planar point feature linearized measurement

function, Eq. (14), we will explain in detail how to process
measurements with in-state or out-of-state features. (see
Sec. II for non-planar point features). We then consider the
following update methods:

• SLAM Plane + SLAM Point: Standard EKF update
• SLAM Plane + MSCKF Point: Remove the point feature

dependency through nullspace projection [see Eq. (18)].
• MSCKF Plane + SLAM Point: Remove the plane feature

dependency by:
N⊤

π z̃A = N⊤
πHT x̃T +N⊤

πHf
Gp̃f +N⊤

π n (22)
where Nπ is the left nullspace of the stacked Hπ . This
requires more than 3 planar point features.

• MSCKF Plane + MSCKF Point: Remove the plane and
point feature dependency by:

z̃ = HT x̃T +
[
Hf Hπ

] [Gp̃f
GΠ̃

]
+ n (23)

⇒ N⊤
fπz̃ = N⊤

fπHT x̃T +N⊤
fπn (24)

where Nfπ is the left nullspace of [Hf Hπ]. Observing
a feature more than three times is necessary.

TABLE II: Average 20 run RPE and NEES for different
algorithm configurations. Units are in degrees / cm. A
constraint noise of σd = 0.001 was used. M corresponds
to MSCKF features (out-of-state), S for SLAM features (in-
state), PT for point features, and PL represents plane features.

Algorithm 60m 80m 100m 120m NEES(3)

M-PT 0.37 / 4.3 0.44 / 5.0 0.50 / 5.6 0.55 / 6.2 3.39 / 1.75
M-PT & M-PL 0.37 / 4.3 0.43 / 4.9 0.48 / 5.5 0.53 / 6.1 3.34 / 1.72

M-PT & MS-PL 0.36 / 3.6 0.42 / 4.1 0.48 / 4.6 0.53 / 5.1 3.99 / 1.44

MS-PT 0.30 / 3.6 0.35 / 4.1 0.40 / 4.6 0.43 / 5.1 3.45 / 1.63
MS-PT & M-PL 0.29 / 3.5 0.33 / 4.0 0.37 / 4.5 0.41 / 4.9 3.09 / 1.44

MS-PT & MS-PL 0.29 / 2.9 0.35 / 3.3 0.39 / 3.7 0.42 / 4.1 3.38 / 1.20

IV. MONTE-CARLO SIMULATIONS

The proposed ov plane is built as an extension to Open-
VINS [20]. We generate a room surrounding the simulation
trajectory and visual points lying on the planes, see Fig. 2.
Data associations between points and planes are assumed to
be known. Table I contains the key sensor frequencies, sensor
properties, and noise parameters used in the simulation.
Errors are reported using the Normalized Estimation Error
Squared (NEES), Relative Pose Error (RPE), and Absolute
Trajectory Error (ATE) metrics throughout the different ex-
periments (see [64] and [65]).

Results for a 20 run Monte-Carlo are shown in Table
II with different estimator configurations. All algorithms
remain consistent as their NEES values are close to three.
The M-PT & M-PL, which adds MSCKF planes, has little
improvement over the baseline M-PT system. We attribute
this to the MSCKF plane track length only being that of
the sliding window size and the regularity does not improve
MSCKF point linearizations by much. But, if the planes with
sufficient observations are inserted into the state vector, M-
PT & MS-PL, then a clear performance gain can be seen for
all trajectory lengths. Within the simulation, the ceiling and
floor can be tracked over significant portions of the trajectory
allowing for improved feature triangulation and leveraging of
the structural regularity information.

Next, we investigate the impact of co-estimating SLAM
points and planes. The baseline MS-PT is more accurate than
the M-PT as expected, but it is interesting to see that the M-
PT & MS-PL is able to perform near the level of accuracy
with only estimating, at maximum, six environmental planes
alongside MSCKF point features. Again the MSCKF plane,
MS-PT & M-PL, has little impact on accuracy over the point-
only MS-PT, while the addition of SLAM plane estimation in
MS-PT & MS-PL has the overall best accuracy. These sim-
ulation results demonstrate the improved VIO performance
with planar regularities for both in-state SLAM and out-of-
state MSCKF point features.

V. REAL-WORLD EXPERIMENTS

We evaluate the proposed system on the Vicon room
scenarios from the EuRoC MAV dataset [66] which provides
20Hz stereo images, 200Hz ADIS16448 MEMS IMU mea-
surements, and optimized groundtruth trajectories. We do not
evaluate on the machine hall scenarios due to their cluttered
environment and lack of planar structures. An additional AR
table dataset was collected as an example scenario in which a



user walks around a central table.2 An Intel Realsense D4553

with 30Hz RGB-D (depth was not used) and 400Hz BMI055
IMU along with 100Hz OptiTrack poses were recorded in 1-
2 minute segments. The groundtruth was recovered using the
vicon2gt utility [67]. We extract 200 sparse point features
and keep a maximum of 15 SLAM point features in MS-
PL.4 Two additional state-of-the-art visual-inertial systems,
VINS-Fusion [68] and OKVIS [6], are evaluated in addition
to OpenVINS [20], MS-PT, and the proposed ov plane
extensions.5 All methods are run without loop-closure, with
a monocular camera and IMU as input, and with spatial-
temporal calibration if supported.

Algorithm 2 Plane Detection and Tracking
Sparse Point Features:

• FAST [69] detection with KLT optical flow [70]
• Robustified with 8-point RANSAC
• Provides frame-to-frame plane tracking

Point Feature Preprocessing:
• Point features are incrementally triangulated into 3D if

sufficient observations
• Delaunay triangulation of valid features to determine spatial

relationships [71]–[73]
• Each triangle’s normal is computed using its three points:

Gvi = normalize(Gpi − Gp0)
Gnj = normalize(⌊Gv2×⌋Gv1)

Vertex Normals:
• Vertex normals of connected triangles are collected
• Compute angle variance and max angle difference between

normals θ = acosd(Gn⊤
i

Gnj)
• If either is above a threshold, reject this vertex as being on

the “edge” of two planes
• Else average normal is computed and vertex is valid

Vertex Matching Heuristics:
• For each valid vertex, i, compare its neighbors
• Normal difference: acosd(Gn⊤

i
Gnj) < ∆θ

• Point-to-plane distance: Gn⊤
i

Gpj − Gdi < ∆dz
• Avg. distance di of point Gpi to N closest points [74]

passes plane Z-test: (di − d̄)/σd < z
Plane Merging / ID Management:

• For all vertexes matched, select the smallest (oldest) plane id
and assign it to all

• If no feature has a plane id (from previous frame or match),
then assign a new id

A. Plane Detection and Tracking

Details of the plane extraction are summarized in Algo-
rithm 2, and an example extraction with recovered normals
can be seen in bottom of Fig. 2. From a high level, we
first perform sparse temporal point feature tracking which
provides frame-to-frame matching knowledge. The 3D posi-
tion of point features are recovered efficiently in the global
frame by incrementing their information at each timestep. We
then recover a sparse 3D geometric mesh of the environment

2https://github.com/rpng/ar_table_dataset
3https://www.intelrealsense.com/depth-camera-d455/
4All computational results were performed in a single thread on an

Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz.
5Note that we have tried to reproduce the results of [53]–[55] for a fair

comparison, but were unable to achieve sufficient accuracy on their 2019
v4.0 code release. The latest main branch no longer supports the use of
structural regularities.

Fig. 2: EuRoC MAV [66] with estimated planes shown
as meshes (not all in state vector, top left). Simulation
environment (top, right) has a 1.2km trajectory in a 15.2
× 9.5 × 1.7m room (points are colored by plane). Bottom
row shows V1 01 sparse tracking mesh with normals (left),
and extracted planes (right).

which is used to recover per-feature normals. A pairwise
comparison with a series of heuristics is used to finally
cluster points into common planes.

We ran the proposed plane tracker on a series of datasets
and summarized its statistics in Table V. In datasets with
high dynamic motions, it can be challenging to extract
planes because of poor sparse point feature tracking and
dynamic movement preventing sufficient observations for
feature triangulation. In particular, the V1 03, V2 02, and
V2 03 datasets have very dynamic motions which are not
amendable for uniform point feature extraction and a large
number of sufficiently observed planar features. It can also be
noticed that these datasets have a very low number of features
per plane, limiting the number of possible SLAM planes
(and on some datasets no planes are used in an update).
The additional computational cost for plane detection and
matching is around 2-4ms, which is similar to sparse point
feature tracking (around 3-4ms).

On the self-collected AR table datasets, we observed that
due to the larger planar surfaces and longer-view time, planes
can be sufficiently tracked for long periods of time with
a high number of features per plane. This is amendable
for leveraging structural regularities. In addition, it is not
possible to take advantage of environmental white walls
since no visual point features are extracted to facilitate
plane detection. Thus extraction of planes remains limited
to regions with sufficient texture.

B. EuRoC MAV Indoor Dataset

Table III shows the average ATE over each dataset for
different configurations. Looking first at M-PT, on the V1 01
dataset there is a clear advantage to including SLAM plane
features in the state (see Fig. 2 for extracted planes). The
use of MSCKF planes seems to show the same performance
without planes, mirroring the simulation results. For most
datasets with limited plane extraction, see Table V planes
per frame, there is very little improvement over point-based
VIO. In general, the OpenVINS-based systems demonstrate

https://github.com/rpng/ar_table_dataset
https://www.intelrealsense.com/depth-camera-d455/


TABLE III: EuRoC MAV ATE (degree / cm) along with average timing for the V1 01 easy dataset. σd = 0.01 was used.

Algorithm V1 01 V1 02 V1 03 V2 01 V2 02 V2 03 Time (ms)

M-PT 0.83 / 8.6 1.57 / 9.1 2.50 / 15.5 1.73 / 12.1 1.34 / 9.4 1.61 / 15.6 8.3 ± 1.7
M-PT & M-PL 0.82 / 8.6 1.58 / 9.2 2.45 / 15.3 1.73 / 12.1 1.22 / 9.7 1.61 / 15.6 12.2 ± 2.7

M-PT & MS-PL 0.75 / 7.6 1.55 / 9.0 2.50 / 15.5 1.73 / 12.1 1.28 / 8.8 1.61 / 15.6 12.4 ± 2.7

MS-PT 1.32 / 8.4 1.58 / 7.0 2.20 / 12.2 0.80 / 11.3 1.96 / 8.3 1.77 / 16.9 9.0 ± 2.0
MS-PT & M-PL 0.61 / 5.3 1.58 / 7.5 2.32 / 12.5 0.89 / 12.5 1.93 / 7.4 1.77 / 16.9 13.9 ± 3.8

MS-PT & MS-PL 0.75 / 6.9 1.55 / 6.9 2.41 / 12.5 0.82 / 10.8 1.40 / 6.8 1.77 / 16.9 13.8 ± 3.4

VINS-Fusion [68] 1.24 / 5.8 2.61 / 11.5 3.61 / 20.5 1.99 / 8.0 3.13 / 8.7 3.54 / 19.7 31.9 ± 12.3*
OKVIS [6] 0.72 / 8.3 2.01 / 14.5 10.47 / 107.4 0.94 / 13.4 1.17 / 19.1 2.37 / 23.3 59.9 ± 31.6*

* Timing for VINS-Fusion [68] and OKVIS [6] only reports their optimization time (no feature tracking).

TABLE IV: Self-collected AR table ATE (degree / cm) and average timing for the table 01 dataset. σd = 0.01 was used.

Algorithm table 01 table 02 table 03 table 04 table 05 table 06 table 07 table 08 Time (ms)

M-PT 0.45 / 6.8 0.85 / 2.4 1.37 / 5.6 0.83 / 7.5 0.78 / 5.0 0.66 / 4.9 0.94 / 4.8 2.00 / 12.5 8.7 ± 1.7
M-PT & M-PL 0.52 / 6.5 0.91 / 2.5 1.44 / 5.9 0.87 / 7.1 0.76 / 4.9 0.67 / 5.9 0.85 / 4.7 2.02 / 12.8 13.3 ± 3.2

M-PT & MS-PL 0.67 / 4.6 0.72 / 2.0 0.96 / 3.0 0.75 / 3.2 0.62 / 4.0 0.75 / 4.4 0.92 / 4.2 1.88 / 9.2 13.9 ± 2.9

MS-PT 1.15 / 5.7 1.79 / 4.1 2.41 / 6.9 1.28 / 5.7 0.56 / 2.7 0.78 / 3.6 1.00 / 4.8 0.68 / 11.2 9.4 ± 2.0
MS-PT & M-PL 1.32 / 5.5 0.89 / 2.5 1.03 / 4.5 1.10 / 4.7 1.01 / 4.4 1.81 / 6.0 1.06 / 4.6 1.29 / 11.2 15.0 ± 3.9

MS-PT & MS-PL 1.25 / 5.1 0.65 / 2.3 1.05 / 4.6 0.79 / 5.0 0.70 / 2.6 1.29 / 4.5 1.12 / 5.1 0.82 / 6.8 14.7 ± 3.2

VINS-Fusion [68] 1.62 / 5.8 1.32 / 3.0 1.47 / 7.6 1.75 / 5.6 1.12 / 3.4 0.98 / 5.3 1.67 / 9.3 5.03 / 23.3 35.6 ± 17.0*
OKVIS [6] 2.48 / 9.0 2.01 / 7.7 3.94 / 15.3 2.05 / 16.2 0.77 / 24.5 0.74 / 10.2 2.07 / 13.8 1.54 / 19.8 85.5 ± 32.6*

* Timing for VINS-Fusion [68] and OKVIS [6] only reports their optimization time (no feature tracking).

TABLE V: Tracking statistics and time to perform plane
tracking (i.e., it does not include sparse point tracking).
Statistics include: features per plane, average plane per
frame, average plane tracking length, and active planes in
the state per frame.

Dataset Feat. / PL PL / Frame Track Len. PL Active Time (ms)

V1 01 19.6 ± 13.3 2.9 ± 1.3 53.4 ± 74.0 0.9 ± 0.7 3.3 ± 0.7
V1 02 13.7 ± 10.9 1.7 ± 1.3 20.0 ± 26.8 0.3 ± 0.5 2.5 ± 0.8
V1 03 10.1 ± 9.4 0.7 ± 1.0 24.9 ± 26.0 0.0 ± 0.2 2.0 ± 0.7
V2 01 8.0 ± 5.0 1.4 ± 1.3 39.9 ± 43.1 0.1 ± 0.3 2.5 ± 0.6
V2 02 9.5 ± 8.1 1.0 ± 1.1 23.3 ± 22.8 0.0 ± 0.1 2.1 ± 0.6
V2 03 6.3 ± 1.8 0.2 ± 0.4 14.4 ± 15.0 0.0 ± 0.0 1.4 ± 0.6

table 01 27.3 ± 13.1 2.7 ± 1.1 61.1 ± 227.6 1.1 ± 0.5 3.5 ± 0.7
table 02 82.0 ± 58.7 2.2 ± 1.3 49.1 ± 249.2 1.2 ± 0.6 4.1 ± 0.9
table 03 33.9 ± 21.3 3.0 ± 1.2 88.5 ± 337.4 1.5 ± 0.6 4.0 ± 0.7
table 04 35.3 ± 23.1 2.1 ± 0.9 68.6 ± 428.0 0.9 ± 0.4 4.2 ± 1.3
table 05 38.6 ± 27.6 2.5 ± 1.0 119.2 ± 327.2 1.2 ± 0.7 3.5 ± 0.6
table 06 43.5 ± 30.5 2.0 ± 0.9 69.3 ± 131.6 1.1 ± 0.8 3.2 ± 0.8
table 07 16.6 ± 8.2 2.8 ± 0.9 106.8 ± 163.8 0.3 ± 0.5 3.0 ± 0.6
table 08 20.7 ± 13.5 1.8 ± 1.0 54.1 ± 260.1 0.6 ± 0.5 2.7 ± 0.6

superior computational efficiency and outperform other state-
of-the-art methods.

When SLAM point features are included, MS-PT, the per-
formance gains between point-based and plane-aided become
smaller. There can even be cases where the use of planes can
hurt performance, which we equate to SLAM point features
being more sensitive to incorrect data associations due to
their length of time in the state. The system is able to
perform well above the real-time threshold of 50ms, with the
increase in computation mainly coming from plane detection
and matching.

C. AR Table Dataset

The ATE for the self-collected AR table dataset is shown
in Table IV. Looking at M-PT, it is clear that there is a
significant improvement of 1-3cm of accuracy when planar
regularities are used. The table or floor planes are typically
tracked over large segments of the trajectory, see Table V av-
erage track length, and thus provide a long-term loop-closure

for all points. The planes’ large spatial volume also allows
for more accurate feature triangulation, possibly reducing
linearization errors. When SLAM point features are added,
there is still a gain of accuracy on most datasets, but there
are a few where planar constraints can hurt performance.
We plan to investigate this in the future. We additionally see
that the use of MSCKF plane features has little impact both
in real-world experiments and simulations thus we do not
recommend their use as a regularization source.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a novel, lightweight MSCKF-
based VIO system that can incorporate planar regularities
without requiring an additional sensor or neural network.
To the best of the authors’ knowledge, we are the first
to incorporate planar regularities as higher-level structural
information within an efficient monocular MSCKF-VIO. To
achieve real-time and accurate performance, the proposed
VIO architecture is carefully designed with in-state SLAM
and out-of-state MSCKF point and plane features. A novel
and robust plane detection and tracking algorithm was evalu-
ated and shown to recover co-planar point features efficiently.
Extensive simulation and real-world experimental results
demonstrate that the proposed system is able to outperform
traditional point-based VIO in man-made environments. We
have publicly released the AR table dataset for the research
community.

In the future, we plan to investigate if planes can reduce
linearization errors, crucial to the use of first-estimates
Jacobians (FEJ) [15], [75], of point features as they are
jointly refined and thus could improve poor point feature
triangulation results. We are also interested in applying
regularization to lines and including cross-plane constraints.
We will additionally investigate efficiently building large-
scale plane maps [76] with reduced feature representations.
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